
WHOI-87-38

Woods Hole Oceanographic Institution
Massachusetts Institute of Technology

du N9CHtjS

Joint Program
in Oceanography 0

Oceanographic Engineering OF Ttcy

0
00

N OCEAN ENGINEER DISSERTATION

A Prony Algorithm for Shallow Water
Waveguide Analysis

by

Ferdinand J. Diemer DTICAsk L.ECTE

September 1987 tJU 0 8 1989

0j j 07 3



WHO-87-38

A Prony Algorithm for Shallow Water
Wavegulde Analysis

by

Ferdinand J. Diemer Ac-ession For

Woods Hole Oceanographic Institution DTIC TAB

W oods Hole, Massachusetts 02543 U nanouC d 

and Justifioatto

The Massachusetts Institute of Technology .
Cambridge, Massachusetts 02139 Distribution/

Availability Codes
A vahl and/or

September 1987 Dist j Special

Dissertation

Funding was provided by the United States Navy.

Reproduction in whole or in part is permitted for any purpose of the
United States Government. This thesis should be cited as:

Ferdinand J. Diemer, 1987. A Prony Algorithm for Shallow Water
Waveguide Analysis. 0. E. Thesis. MIT/WHOI. WHOI-87-38.

Approved for publication; distribution unlimited.

Approved for Distribution:

Albert. Williams, 3rd, Chairman(2 cpaitinent of Ocednl Enghiczrihg

Charles D. Hollister
Dean of Graduate Studies



A PRONY ALGORITHM FOR SHALLOW WATER WAVEGUIDE

ANALYSIS

by

Ferdinand Joseph Diemer

BSEE, United States Naval Academy (1980)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF

OCEAN ENGINEER

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

August, 1987

© Ferdinand Joseph Diemer, 1987

The author hereby grants M.I.T. and WHOI permission to reproduce and
to distribute copies of this thesis document in whole or in part

Signature of author ,
Joint Program in Oeanographic Engineering
Massachusetts Institute of Technology and
Woods Hole Oceanographic Institution

Ceritified by Aa , V, L' k
Georgc V. Friskhesis Supervisor

Accepted by A 1)- Vi, a k
George V. Fris, Chairman, Joint Committee
for Oceanograp -c Engineering, ,Massachusctts Insiitute
ol technology/Woods Hole Oceanographic Institution



A Prony Algorithm for Shallow Water Waveguide Analysis

Ferdinand Joseph Diemer

Submitted in partial fulfillment of the requirements for the degree of

Ocean Engineer

at the

Massachusetts Institute of Technology

and the

Woods Hole Oceanographic Insititution

August 1987

ABSTRACT

Low frequency acoustic propagation in shallow water is examined from a normal
mode context. By modelling the far field pressure field as a modal sum, propagating mode
characteristics of wavenumber, initial phase, attenuation and amplitude may be estimated
using a high resoluticn parameter modeling technique. The advantages of such an
algorithm are the resolution of closely spaced modes in a range independent environment
and the ability to analyze range dependent waveguides.

This thesis presents the application of a Prony algoitihm to the shallow water
environment. The algorithm operates directly on the signal matrix. Synthetically
generated, range independent pressure fields are used to analyze the technique's
performance and to observe its sensitivity to variations in model specifications. Noise is
added to determine the threshold of acceptable performance. As a consequence of field data
tests, further enhancements to the algorithm are suggested.

Range dependent performance is evaluated on a coastal wedge example and
geoacoustic parameter shift example.
Thesis advisor: George V. Frisk, Associate Scientist, Woods Hole Oceanographic
Institution
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Chapter 1
Introduction

1.1 Introduction
In this thesis, we shall investigate the application of a signal processing technique to

acoustic propagation in a shallow water waveguide. As is the case in many disciplines,

advances in the ocean acoustics community tend to occur in incremental steps. Often, the

approaches used in acoustic problem formulation or analysis are successfully applied in other

research efforts. Examples include ray theory (from optics), method of images

(electromagnetic theory ) and fast field programs (digital signal processing). We shall examine

the application of Prony's method to the problem of resolving normal modes in CW data

obtained on a horizontal array in shallow water. We expect to formulate a technique which

requires the researcher to incorporate knowledge of the acoustic propagation into a signal

modelling problem. In return for this bounding or constraint of the problem, we anticipate a

gain in two areas. First, in the range independent waveguide, Prony's method should allow

the resolution of closely spaced propagating modes. Second, in a range dependent waveguide,

the short apertures used by the high resolution techniques may permit estimation of waveguide

parameters by an adiabatic assumption.

To obtain such high resolution using conventional discrete Hankel transforms and FFT

beamforming techniques requires a large aperture since the resolution is inversely proportional

to the length of the array[l]. In theoretical or computer generated fields, this length of data

may be easily obtained. Shallow water data rarely meets this criterion since ocean waveguides

which are invariant over an interval of kilometers (which is needed to obtain the desired

resolution) are not generally found in practice.

Applications of Prony's method may be found in a variety of disciplines. Research

examples include seismic explorationl2l, acoustic echo reductionf31, subsurface radar[4j,



beamforming[5], and structural analysis[6] . The specific use of Prony's method in a shallow

water waveguide modal context has been explored in parallel with this thesis development by

Shang, et al.[7]. The Shang study considers the algorithm in a scheme to localize a source and

provide some waveguide characterization. Their characterization approach differs from this

thesis in order selection, filter coefficient determination and attenuation parameter estimation.

Such differences in implementation emphasizes the flexible nature of algorithm structure within

the framework of Prony's method.

The motivation for exploring this approach is to assist in the effort to solve the inverse

problem of determining geoacoustic parameters. Specifically, the geoacoustic parameter

inverse technique requires the set of horizontal wavenumbers of the propagating modes as

input data[8- 11]. The signal processing method used provides a means to identify the

horizontal wavenumber of an acoustic field. Ultimately, we envision measurements of the

pressure field in the water column yielding a set of wavenumbers which may then be used to

infer bottom properties.

There are two sets of field data which have been collected to date. These provide a test

environment of the algorithm in the real world. The f irst set was collected in May of 1984 off

the coast of Nantucket Island, MA at 140 Hz and 220 Hz[101 and the other set was obtained in

September of 1985 off the coast of Corpus Christi, TX at 50 Hz and 140 Hz[12]. These sites

were selected since the bottoms are reasonably flat and other studies of bottom properties are

available for comparison of the geoacoustic parameters. The experimental setup uses a small

vessel which tows a two frequency CW source at a fixed depth[8]. The source is towed away

from two fixed moored receivers and the horizontal source-receiver range is monitored via a

radar tracking system. The data collection technique consists of drifting away from the

receivers. The drift rate must be low (< 0.5 knots) to provide adequate sampling (to avoid

aliasing) of the pressure field. The hydrophones are part of a larger BODIS assembly which

removes harmonic time dependence of the pressure data by quadrature demodulation.

-6-



The effect of the drift scheme and quadrature demodulation is to model the data set as being

collected on a synthetic array. The physical setup is summarized in figure 1.1.1.

~~~Radar ranging system ,

Synthetic array '.\ / Source

Re!ceiver 2
(BODIS 2)

Receiver 1
(BODIS 1)

.- . ..-. ...

Fig 1.1.1 Experimental setup for data collection
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1.2 Outline

Chapter 2 provides a basic review of normal mode theory in an acoustic waveguide by

developing the mathematical description in terms of a Sturm Liouville problem. The second

section provides a derivation of the Prony model and explores the nuances of the algorithm

used. The last pan of the chapter casts the normal mode environment in terms of the model and

illustrates its validity. Two examples are provided: the first involves the application of the

method to synthetic pressure field data, while the second demonstrates the ability of the

technique to extract mode shapes through use of a vertical array.

In Chapter 3, the depth dependent Green's function is reviewed and the Prony energy

spectral density (ESD) is introduced. The ESD is used as a tool to transform all parameter

estimates into a simple graphical display. As such, it acts as a tool to aid in waveguide

analysis. Additional tools are developed and examined, and the algorithm is tested using these

tools on two synthetically generated sets of data. The effect of changes in input variables on

parameter estimates is examined and ranked according to sensitivity. This ranking leads to the

development of a set of empirically derived guidelines to specify a model order, aperture size

and averaging. The chapter concludes with a performance evaluation on field data.

Range dependent performance is addressed in Chapter 4. Two examples of a range-

dependent environment are provided. One waveguide consists of an upslope propagation in a

coastal wedge scenario. The second contains a step change in bottom geoacoustic properties.

Chapter 5 provides a "wish list" of enhancements and considerations in further versions

of this high resolution scheme. Topping the list is the issue of more robust performance in

noisy environments. An example of a bandpass filter scheme to address this issue is also

provided.
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Chapter 2
Basic Theory

2.1 Normal Mode Theory Review

A review of basic normal mode theory is important to emphasize assumptions made

in the development of the description oi the acoustic field and in the application of the

Prony model to this environment. An advantage of the normal mode approach is that it

allows us to build on previous results as the boundary conditions become more complex.

It will be shown that this method makes the problem tractable by casting the linear, second

order differential equation arising from the boundary value problem in terms of a Sturm-

Liouville problem. This allows us to apply the rich existing mathematical theory for the

subject.

In this thesis, sound propagation in shallow water will be treated as a field

propagating within a waveguide constrained by the surface and the bottom. The field

distribution within the waveguide is affected by the boundary characteristics so that the

local modes act as a sampling mechanism for the properties of the boundaries. It is

assumed that the top boundary condition remains constant (in this case, a pressure release

surface) while the mode wavenumbers are affected by changes in the dimension of the

waveguide (bathymetry) and bottom properties (such as sound speed, density and

attenuation) (see fig 2.1.1). The water column is the region of interesi for measurement

purposes since the pressure field may be easily obtained by real towed or synthetic aperture

arrays. In this section, we will assume that the wavegu, e is locally range-independent.

After presenting some general normal mode theory, this section will use hard bottom and

Pckeris waveguides to cmlphasize salient points



z ~ surface: pressure releas.;Z 0 p(r,O)=O0

sourc bottom: 1) hardh

2) Pekeris -0- -L
P0- 7Nh z~h

and

p Iz=h P J z~h

Fig 2.1.1. Shallow Water Waveguide Model

In the ocean acoustics waveguide, the governing equation for the acoustic pressure,

P, is the time dependent wave equation[ 13]:

(V=_- )P(r,t) = -4~TF(r,t)(2.1

where F~r,t) is a source function. For the case of interest, we will consider a harmonic

point source function. We therefore let P(r,t) =p(D eC~t and F(r,t)=f( '6)ejICt which

transforms the wave equation to the inhomogeneous llelmholtz equation:

(V2 + k2 Ur )p(~) = -4nt f(~) , k(r -) (2.1.2)

The point source is modelled as an impulse function of strength S, ie:

(V2 + k2Ur )p~r -4-, S 8( - 1o) (2.1.3)

ITI cylindrical coordinates, assuming horizontal stratification k(r k(z) and a with (r)

p(r) -ind a source located at (rO,74) On)), the I leinflol 11 equailion i sI 14 1:

1 d) jp I)1 jD2n ) ')(z) 8(r-r0 ) &.O 2 4
-- (r -) - + k -4- (5k 0( OO)r oDr ()I- r- -)O2(3 2 r
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Assuming cylindrical symmetry, p(r) = p(r,z), and r0--O,the Helmholtz equation may be

integrated with respect to 0 to remove angular dependency:

2t

1 (r ap a2 p 6(r
S-(r -)+ - + k2 (z) p] dO= -4n -(r (z-z0) (2.1.5)r 3r~ z2 r

0

which leads to:

+ a 2 6(r)-(rr )+ p+z k2(z) p = -2- -8(z-z0) (2.1.6)

The pressure field is constrained by the following boundary conditions:

" p(r,O) = 0 (pressure release surface)

• a bottom impedence boundary condition

and a Sommerfeld radiation condition (which specifies energy from the source as

propagating outward)[ 14).

The two dimensional Green's function can be expanded in a complete orthonormal

set of the eigenfunctions of depth, z[ 15,16]. The method of solving an inhomogeneous

Sturm Liouville equation (see Appendix A) may be used as follows. First, the

eigenfunctions, Un(Z), are found by solving the homogeneous Helmholtz equation by

separation of variables. This yields an equation for the un(z):
d 2 u 2] 0 2
d2 + lk2 -  u=O andk is the separation constant. (2.1.7)

The solution for p is then assumed to have the form p(r,z) = XRn(r)un(z) and the assumed
n=1

solution is substituted into equation (2.1.6), the inhomogeneous Helmholtz equation.

Then, the orthogonality and completeness characteristics of the eigenfunctions, Un(Z), are

used to find the coefficients Rn(r). For an arbitrary k(z), the solution may be expressed as,

p (r, z) vz j S (zo,) u,,(z) I I(' (k1~r) 4- 1(r)(..)

fl I
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in which H()(knr) is a Hankel function of the first type and is generated by the solution to

equation (2.1.7). While the discrete sum corresponds to the trapped modes, the continuum

contribution, I(r), consists of branch line integrals and "improper" modes (depending on

the branch cut selection)[17-201.

Restricting our attention to the hard bottom case requires imposing a bottom

boundary condition of Iz = h = 0. The hard bottom isovelocity case yields an analytic

solution for un(z)[14]:
00

p(r,z) = jit sin(yriz0) sin(ynz) H(1) (knr) where yn = k2 - k2n (2.1.9)

n=1

= vertical wavenumber

(n - 1t

h

Although a perfectly reflecting (hard) bottom is not found in nature, this simple

model allows identification of three important normal mode characteristics which may be

used in more complex models. First, as the range from the source increases, the Hankel

function may be replaced by an asymptotic approximation[21 ]:

4(knr-F) (2.1.10)

Second, a propagating mode may be viewed as a cylindrically spreading, outgoing wave

with a vertical shape determined by the mode eigenfunctions, un(z)[22J. Tlird, thc

placement of source and receiver directly affects mode amplitudes. In equations (2. 1.8)

and (2.1.9), we can see the product of the source and receiver cigenfunctions determine the

mode excitation available at the receiver.

A more complex model introduced by Pekens in 1948 consists of approximatniM

the bottom by a half space with a constant density and sound specdl231. The resultitM

-12-



eigenvalue spectrum consists of two seperate regions; one region of the spectrum has a

discrete spectrum and the other region has a continuous spectrum. This change in spectrum

characteristics is due to the bottom boundary defined as an impedence condition:
_I l1 Pb1 ap1 1 Pb and (2.1!.1!1)

po0 Z z=h- Pb z z=h

P 1z=h- Pbz= h

The horizontal wavenumber which separates the discrete and continuous regions is known

as the cutoff wavenumber is delineated by the wavenumber of the bottom half space, which

has sound speed cb and density Pb. This discrete/continuous split spectrum is found in

more complex models in which the horizontally stratified layers that make up the bottom

profile are usually terminated at an arbitrary depth by an isovelocity halfspace. The cutoff

wavenumber is set by this layer's wavenumber[24].

An intutive approach to cutoff is formulated by alternately posing the modal

description as a superposition of up and down going plane waves(since un(z) = sin(ynz) =

2j )[13,25]. This expression is well suited to identifying modes which will

propagate.

kn

Fig 2.1.2 - Plane Waves Incident on Bottom



As shown in figure 2.1.2, the downgoing plane wave is incident on the bottom at an angle

On, which is defined by On = tan-(-'n) • As the mode number, n, increases, the angle On

decreases and so the inclination of the plane waves becomes more nearly vertical. As kn

approaches zero and becomes imaginary, the mode changes from a propagating mode to an

exponentially decaying, inhomogeneous wave. This situation in which the sound energy is

present as a heavily attenuated field is known as cutoff; the angle at which this occurs is

known as the critical angle, 0c[26]. An incident plane wave associated with a propagating

mode will experience total reflection at the bottom; in the sediment, the sound pressure is

exponentially damped (Fig 2.1.3).This "impedance condition" dictates the existence of a

mechanism to account for energy "leaking" into the bottom since the plane waves (the

modes are being modelled as a superposition of up and downgoing plane waves) incident

on the bottom are no longer being perfectly reflected.

By decomposing the depth eigenfunctions into plane waves, the plane wave

incident angles which lead to propagating modes may be divided into two regions[27]:

- 0 : Region of perfect reflection resulting in a discrete set of trapped modes in

water column and exponential decay in the bottom.

• Q: Region known as the continuum which is propagation region where leaky

(or virtual) modes can exist. These heavily attenuated modes allow energy to leak

into the bottom; some of this energy may be directed back into the waveguide by

the bottom's velocity/density profile.

-14-



mode IMode 
2

Water Column

Sediment
p ,c

Fig 2.1.3 Pekeris Mode Shapes for Modes 1 and 2

The anticipated loss of amplitude with respect to range in a lossless waveguide

shoud be-Ibi xetddces sdet h yidi~ pedn emcnandi

shudbe Ti xpce eces s u oth yinr~4spedn tr otandi

the Hiankel functionl. The observed rate of decrease is higher than this arnd is due to

absorption in the water column and dissipation of energy by the sedimeflul
26 1.

Mathemfatically, this may be treated by allowing the horizontal wavenumber to have a small

imaginary compo I ent, ie kn-~4 kn +j 8kn[28I. By using this perturbative approach , some

conclusions can be made regarding the effect of the attenualtion onl the modal sum

description. The mode attenuation coefficient, 8kn is proportional to the perccntage of

miode shape in the bottom. if the mode has significant amplItUde in a lossy bottomn thcre

-15-



will be high attenuation with respect to range. While the water column mode shapes

won't change when attenuation is taken into account, different modes will have different

attenuation rates. This is evident if the plane wave decomposition of the modes approach

is used. The higher order modes are incident on the bottom with steeper angles (closer to

normal incidence). These modes undergo more reflections for a given horizontal range

than modes which are incident closer to grazing.

The cursory review of normal mode theory of this section was meant to emphasize

key aspects of the shallow water waveguide problem. The hard bottom waveguide

example demonstrated the modal sum form. The asymptotic behavior of the Hankel

function was stated as well as characteristics of the propagating energy[27]. The

substitution of an impedance condition for the formerly hard bottom results in two distinct

regions in the spectrum. In one, the spectrum is discrete and in the other, it is continuous.

The distinction between the discrete and continuous spectrum may be set by the

wavenumber of a "basement" isovelocity halfspace. The general pressure field description

consists of a modal sum and continuum as in:
00

p(rz) = ji un(ZO) un(z) H(1 (knr) + I(r) (2.1.12)

n=1

Attenuation effects are incorporated by a small imaginary term in the horizontal

wavenumber, kn.

If the asymptotic form of the Hankel function is used (equation 2.1.10) and the attenuation

term is included, the pressure field description becomes:
P

p(r,z) =ji a Uq(ZO) Uq(Z) . eJ (kqr - 4) + cxq r (2113)

q=1

-16-



2.2 Prony's Method
Prony's niethod is a parameter estimation technique in which the model parameters

are varied to fit the observed data. Parameter estimation approaches involve the use of a

priori knowledge in the intelligent selection of an appropriate model[29]. In Prony's

method, the signal is considered to be composed of a linear combination of damped

complex exponentials[30]. Prony's method is by no means the only model which may be

applied to the ocean waveguide (for example Pisarenko or autoregressive moving average

(ARMA) modelling might also be used)[3 1]. The use of Prony's algorithm was driven by

two factors. First, the method has the advantage of requiring short data lengths ( a small

range aperture) to yield high resolution wavenumber estimates. Second, the modal

structure of far field propagation in the shallow water waveguide can fit the Prony model

very well. These two characteristics lend credibility to the application of the technique to

shallow water waveguide propagation.

In 1795, Gaspard Riche, Baron de Prony, proposed an interpolation scheme in

which a deterministic model was assumed and the equally spaced data was used to fit this

deterministic model[31]. The method consisted of an exact fit of the data points to

exponentials; the evolution of the algorithm since then has been significant. The insight of

the solution method and the ensuing three step process has endured although the expanded

algorithms additionally address issues such as stability, robustness in noise and least

squarc fits.

The model used by the algorithm is a weighted sum of complex damped

exponentials. Consideration of the exactly determined case allows identification of the

steps used in the algorithm; the development of the extended Prony method(least squares

fit for an overdetermined system) is an enhancement of this basic procedure.

-17-



The observed data, y[n], is assumed to fit the model:

y[n] = iAqexp[(aq + jkq)nT + jOq] (2.2.1)
q=O

with

p = model order

T = sampling range

Aq = amplitude

cq= damping factor

kq = wavenumber

0q = initial phase

Regrouping terms:
n~

y[n] = 2vk zn  (2.2.2)

q=O

where

Vq = Aqexp(jq)

Zq = exp[(cXq + jkq)TI

For p data points, the system may be expressed in matrix form:

o 0 0 [Y_-01
I I I 1y[1]1

Zo zi ... ZP- 1  (2.2.3)

z 0 z .. Z P ,Vp [p-

or

ZV=Y

In order to solve for the complex quantities Vq and zq, we will decouple equation (2.2.3)

by solving for the zq's. The insight offered by Prony in this scheme was that one approach

-18-



for finding the ZqS is the solution of a homogeneous linear constant coefficient difference

equation (LCCDE).

The first two steps of Prony's method solve for the zq's as follows:

Consider the observed signal,y[n], to be the output of an all pole filter driven by an unit

impulse function (Fig 2.2.1):

x~n] 8[n] I z)='zYz) y[n]

H(z) =Y(z)

X(z)

Fig 2.2.1 Filter Model of Observed Signal

For this model:

H(z)1 (2.2.4)

1 + iaqz-q tI(1-Zr "I )
q=1 r=

Since H(z) is defined as X-') cross multiplying equation (2.2.4) yields:

Y(z)[1 + iaq z-q X(z) (2.2.5)
1 q=1l

Defining a0 = 1 and taking the inverse Z transform results in an LCCDE:
P

x[n]= Y aq y[n-q) (2.2.6)
q=O

The homogeneous portion of the LCCDE is:
P
Z aq y[n-ql = 0 (2.2.7)

q=O

Expanding by one term (recall ao = 1):
P

y[n] + Y_ aq y[n-q] =0 (2.2.,)
q=1

-19-



This yields a set of equations over the observed data range 0 < n < 2p-1:

Sy[p-I]1 y[p-2] ... y[0] /al/ /yyp]

y[p] y[p-1] ... y[l] a2 y[p+iI
= - (2.2.9)

y[2p-2] y[2p-31 ... y[p-1] ap [2 p-1]

The first step of Prony's method involves obtaining the coefficients aq's by solving

equation (2.2.9) using the 2p complex data points y[n]. Notice that the aq's were defined

in equation (2.2.4) as the coefficients of a polynomial which had the Zq's as the roots.

Obtaining the roots of the equationis the second step of the process. Now that the zq's are

available, the third and final step of the process is to solve the exactly determined sytem

defined by equation (2.2.3). The nonlinear aspect of the problem has been isolated in the

second step. An attempt to solve equation (2.2.1) directly by an error minimization scheme

results in a nonlinear set of equations which must be solved by Newton's method or some

other iterative approach.

In the last section, we identified the three steps used to fit observed data to a model

defined by an exactly determined set of equations. In practice, the amount of data typically

exceeds the model order, which allows extension of the procedure to encompass a least

squares estimation. The advantage of the least squares technique is that the issues of noise

and stability may be approached using the rich theoretical material available in linear

prediction, lattice, and autoregressive (AR) filter design[32]. This section will take a closer

look at the three steps in Prony's method and identify the algorithm used in our work.

The first step contains the greatest variety of approaches. The identification of the

"best" polynomial coefficients is complicated by the overdetermined situation; instead of

solving equation (2.2.9) directly, an error criterion must be minimized. There are three

-20-



general ways in which the error criterion is minimized, one "direct" and two "indirect".

The use of "indirect" and "direct" qualifiers is an identification of how the coefficient vector

is determined. In the "direct" method, operations take place directly on the signal matrix

while the "indirect" procedures use the observed data to generate an exactly determined set

of linear equations. The "indirect" methods are the techniques most frequently used and

will be discussed frst.

The "indirect" methods will be presented here from the viewpoint of linear

prediction theory[29,32-34]. A simple way of expressing the linear prediction philosophy

is that the p+l1 output, ie y[p+ 1], may be predicted by using a linear combination of the last

p outputs, ie. y[p], y[p-1],...y[l1. By using our all pole model in Figure 2.2.1, we can

make use of its LCCDE (equation (2.2.6)) and replace the input, x[n], by 8[n].

Since ao = 1, LCCDE may be rewritten as:
P

y[n] = - I aq y[n-q] + 8[n] (2.2.10)
q=1

Denoting * as the predicted estimate of y[p+l1:
P
Y=- aq y[n-qI (2.2.11)

q=1

The errore[n], is now defined as the difference between the observed and predicted value:

e[n] = y[n] - 0 (2.2.12)

The coefficients aq which minimize the energy in the error signal are found by the "normal

equations". In matrix form, the quantity to be minimized is:

C= eT (2.2.13)

The error equations of equation (2.2.12) may be gathered in matrix form:

y - Ca = e (2.2.14)

Expanding (2.2.13) and minimizing yields the following relationship:

C11Ca = CHv (2.2.15)
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which are known as the "normal equations". These equations exploit the orthogonality of

the error vector to the basis set formed by the columns of the signal matrix. The range of

values over which the error is minimized differentiates the two "indirect" methods, which

are known as the autocorrelation and autocovariance methods[331.

The autocorrelation method minimizes the error over an infinite duration signal.

The method assumes a stationary process and yields a matrix system which has a Toeplitz

structure. This symmetric, positive semidefinite characteristic allows the use of Levinson's

recursions for an efficient solution algorithm. The main advantage of the autocorrelation

method is that the ensuing filter is theoretically guaranteed to be stable (all of the poles

within the unit circle of the z plane). Care must be taken in the numerical implementation of

the technique to avoid accumulated roundoff errors from making the autocorrelation matrix

ill conditioned.

The disadvantages stem from the minimization of the error over an infinite interval.

In an all pole model, the impulse response will be infinite in duration. The finite amount of

data available to the user is an implicit windowing of an infinite duration signal. This

windowing effect changes the autocorrelation coefficients in the matrix, forcing an estimate

(rather than determination) of the autocorrelation coefficients. The result of spreading the

error over an infinite interval is that the model generated from all pole data will not match

the actual system. Zero padding and application of windows to the available data minimize

the effects of finite data length but these techniques may be hazardous in a high resolution

spectrum analyzer situation.

The more common "indirect" approach in use today is the autocovariance

method[3,35,361. The error is minimized over the finite length of data. In stochastic

theory this equates to the nonstationary case modelled as locally stationary. The matrix

system which is solved for the aq's is positive semi-defmnite but not Toeplitz. Although

Levinson's recursions cannot be used to solve the system, there are algorithns, most
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notably Marple's, which address efficient solution techniques for this method. By

minimizing the error over a finite interval, the autocovariance method will match all pole

data to the generating system. As the data length increases, the covariance method will

approach the autocorrelation technique.

A drawback to the covariance method is the lack of a stability theorem to guarantee

the filter coefficients will describe a stable filter. This drawback was addressed by Burg,

who developed an algorithm which constrained the problem to yield a stable filter[37,38].

Specifically, this is done by changing the error minimization problem. In addition to the

error defined above, called the forward error, a new error, called the backwards error, is

specified. Burg's rationale was that the stationary signal should "look" the same going

forward and backwards through the data set. The error criteria to be minimized in a Burg

algorithm is the sum of the forward and backward errors. Although summing the error

over twice as many points is advantageous in a short data set, blind application of Burg's

algorithm (also known as the modified covariance method) is dangerous. Specifically, the

problem lies in the assumption of the signal appearing the same regardless of the direction

of data set traversal. A sinusoid does indeed have this characteristic but the presence of

damping (placing an exponential decaying envelope on the siniusoid) requires careful

examination of the physical system before applying the Burg forward-backward error

sum[2]. In the tradeoff between damping and stability, the decision is usually made to

assume an undamped system in return for the assured stability. In the shallow water

waveguide, constraining the pressure field to consist of undamped sinusoids is reasonable

for propagating modes but not for the leaky or virtual modes which may be represented as

damped sinusoids. In addition, although the assumption that the wavenumbers are real (no

damping) is acceptable since the propagating modes have small damping factors, the uLser

must then have other nethods available to estimate mod attenuation.
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The approach explored in this thesis is the "direct" method in which the least

squares operation is performed directly on the signal matrix. The technique is hampered by

the lack of a stability theorem but this was not found to be a problem in practice. In the

"direct" approach, a QR decomposition is used. The QR decomposition L a very stable,

fast technique which uses Householder (orthogonal) matrices to orthogonalize the original

matrix[39,40]. The use of Householder matrices results in a decomposition of the A

matrix into

Apxq =QpxpRpxq (2.2.16)

in which the first q columns of Q form an orthonormal basis for the column space of A and

the last p-q columns form a basis for the left nullspace of A (ie, the last p-q columns are

perpendicular to the first q columns). The first n rows of R form an upper triangular

matrix; the columns of R are formed by successive Householder matrices operating on

corresponding columns of A.

The least squares problem may be solved by considering:

Ax = b (2.2.17)

with

A = p x q matrix (p > q since oveidetermined)

x = q x 1 vector (in Prony's method, these are the aq's)

b = p x 1 vector.

Next, the normal equations for the complex matrix A are expressed as:

AHA x = AH b  (2.2.18)

Substituting QR for A in this system yields the following:

(RI1tQI) QR x = RHQ 11 h (2.2.19)

(Q1IQ) R x = Q11 1) (2.2.20)

R x = Qi ) (2.2.21)

So,



x = R-1QH b (2.2.22)

The advantage to using this approach over the normal equations is evident when the

columns of A are barely uncorrelated. The ensuing calculation of AHA will ampiify round

off errors due to this matrix being ill conditioned. The orthogonal matrix decomposition

approach avoids this problem and the round off error accumulations are at a minimum[41 1.

Specification of a model order is inherent in the first step. The determination of a

"good" order is complicated by using an all pole (also known as an autoregressinve [AR])

model to represent a pole zero (also knowns as ARMA) process. Even if the number of

poles are known apriori, use of the exact number of system poles may not yield a good

result. If the model order is underdetermined, the "spectrum" will be smooth and

smeared. If the order is overdetermined, the model is likely to have spurious peaks[32].

The empirical rule used by the signal processing community of overestimating the model

order is supported by two assumptions. First, underestimation of model order will not

identify true poles while overestimation will tend to identify these poles. Although the

model is forced to find parameters to fit the specified system, the energy of the arbitrary

poles (ie, those in excess of actual system order) is quite small. Second, the presence of

noise in the data may be modelled as zeros[311. An ARMA process represented by an AR

model requires overspecification of model order (actually, the bias of the estimation

decreases as the order increases).

Various researchers have suggested analytical methods to estimate model

order[33,42-44]. Akaike[42] has suggested a final prediction error method and a cost

minimization method in which a cost is assigned for extra coefficients which do not reduce

model order. Criticism of the final prediction method is that it yields too low a model order

while the cost minimization method is said to have statistical inconsistencies. To date, there

is no common approach for identifying a good model order. In the algorithm used here,

the model order specification is left to the user. A first approach used an singular value
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decomposition(SVD) of the signal matrix to obtain singular values of the system. A

sudden decrease in the magnitude of the singular values was the breakpoint of estimating

the actual modes of the system. Two problems with this approach are that the "breakpoint"

is not clearly defined as noise is introduced and the optimum model order is still not

specified by examining the singular values. A more subjective approach made possible by

the interactive nature of the algorithm was to increase the order and examine the outputs.

When the number and values of the wavenumbers of propagating modes (identified by low

damping and high amplitude) stopped changing as order increased, the model was said to

have sufficient order.

Polynomial rooting is the second step of the Prony process. Since this is done

numerically, a robust algorithm must be used. The nonlinear aspect of the parameter fitting

is located in this portion of the algorithm; slight errors in the coefficients may result in

significant changes in the roots[41]. For example, the polynomial x4 - IOx3 + 35x 2 - 50x

+ 24 has roots of(x - 1)(x - 2)(x - 3)(x - 4). A change of 0.5% in the second coefficient

yields a polynomial of x4 - 10.05x 3 + 35x 2 - 50x + 24, which has roots of (x - 0.992)(x -

2.340 - jO.2269)(x -2.340 + jO.2269)(x - 4.378). The choice of a complex rooting routine

by Jenkins and Traub and double precision calculations are the tools used to reduce errors

in this section of the algorithm[45. While the three stage rooting algorithm has performed

well, the sensitivity of the roots of a polynomial to the coefficient values indicates the

choice of algorithms in step one may be the major contributing factor to the accuracy of the

final model.

The third and final step of the routine is the solution of the overdetenrmined version

of the linear system expressed in equation (2.2.3). The minimization of least square error

technique is used; the result is the normal equations approach outlined in equation (2.2.15).

A QR decomposition or the usual least squares technique (x - (AItA)-IA 11 h ) may be

usedJ46J. The algorithm exercised in the thesis rescarch used the second nmethed and
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incorporated a Cholesky decomposition scheme to exploit the Hermitian symmetry of

AHA.
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2.3 Application of Prony's Method to the Shallow

Water Waveguide

In the section on underwater acoustic theory, an expression for the far field acoustic

pressure as a sum of normal modes was developed. While the algorithm for using Proity's

method to fit parameters to a deterministic model was outlined in the last section, the task

of transforming the pressure field to a suitable form remains. We will now develop a

model of the shallow water waveguide in a format which fits that assumed in the last

section.

From eqiaion (2.1.8),the pressure field may be expressed as[ 13]:
P

p(r,z) =jnr a u* (zo) uq(z) H(O (kqr) + 1(r) (2.3.1)S Uq 0
q=l

The far field contribution of the continuum, I(r), may be neglected and the asymptotic

approximation for the Hankel function of

H(l)(kqr) = e.i (kqr- ) (2.3.2)

is substituted into equation (2.3. 1) to yield:
P

p(r,z) j a U;(Zo) Uq(Z) eJ (kqr - -) + aqr (2.3.3)

q=I

Since the pressure field is measured on a horizontal array, p(r,z) will be expressed as p(r)

and the depth dependence will be incorporated into a constant, Aq, in the following manner:
P

p(r) -- exp[(cXq + jkq)r + jOq] (2.3.4)

q=l

The data available for processing are actually samples of the pressure field rather

than the continuous pressure field itself. The discrete samples allow r in equation (2.3.4)

to be replaced by nT in which T is the sampling range. This assumes equally spaced data
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points; in practice, a cubic spline interpolation scheme is used to ensure proper spacing of

the input data.to the algorithm. Experimental results indicate the sampling must be dense

enough to meet the Nyquist criteria to avoid aliasing.[25].

The last step in modeling the pressure field in a Prony format is the elimination of

the -L term in equation (2.3.4). The data is multiplied by the "Fr- to yield the model:

y[n] = p(r)4-Fr= Aq exp[(cxq + jkq)nT + jOq] (2.3.5)

q=0

where

Aq = liU aq uq(zO) uq(Z)l = amplitude

cxq = Im(kq) = damping

kq = Re(kq) = modal eigenvalues

Oq = T + Z U[t aq uq(zO) Uq(z)] = initial phase

This model may be further compacted in the form of equation (2.2.2)

y[n] = vq z (2.3.6)
q=O

where

Vq = Aqexp0q)

z = exp[(aq + jkq)TI

Once the Vq and zq's are obtained through Prony's method, the parameters of the model are

generated via:
tan-1 (Ir(za)'

kq= - (2.3.7)
aq

Aq I q I
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Oq -= tan"1 (Im(vq))Re(vq))

An examination of the output of the program for a simple model is useful as a guide

to gaining physical insight into the analysis results. The algorithm described in section 2.1

was incorporated in a FORTRAN program called PRAWNS (PRony Analysis of

Waveguide for Nominal Spectrum). A sound speed profile (summarized in figure 2.3.1)

was developed and the corresponding complex pressure field versus range data was

generated by SNAP[47]. The sound speed profile is a simplified version of the

experimentally determined profile of the water column and sediment layers off Nantucket

Island in Massachusetts. SNAP, a normal mode acoustic propagation modelling program,

generates a far field approximation of a pressure field from a user defined profile and

frequency (in this case, 220 Hz). In addition to a pressure vs. range output, SNAP

provides a list of the modal eigenvalues (the wavenumbers), the normalized eigenfunctions

(the uq(z)'s) and the attenuation coefficients. This "ground truth" permits a reasonable

method of examining the PRAWNS outpuL

Table 2.3.1 provides the SNAP attenuation and wavenumber outputs for this

profile. Table 2.3.2 is a partial PRAWNS output of two different range intervals. (The

specific relationship among the model specifications listed in table 2.3.2 is covered in

Chapter 3). A brief examination of the PRAWNS outputs in table 2.3.2 will highlight

some program characteristics; the information provided by this simple analysis is rich.

First, the PRAWNS analysis provides a means of identification of the propagating modes

in the overspecified Prony model. As expected, the propagating modes are marked by

high amplitude and low damping. As the model order is increased, the damping and

amplitude remained constant for a given range block. When the order is vastly

overspecified, there is a small change in the propagating mode amplitudes as the energy is
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forced to be distributed among the user specified order. In viewing the tabular data, high

amplitude and low damping proved to be a good indicator as to the actual order of the

system (as mentioned in section 2.2.1, an analytic approach to obtain actual system order

may be performed by an SVD of the signal matrix). Second, as mentioned in the

introduction, the primary objective of the analysis is to obtain accurate wavenumber data.

Comparison of the first three indices of table 2.3.2 with the modes of table 2.3.1 show a

wavenumber match to five significant digits. This is most satisfying given that the aperture

size is 90 meters (30 points of data used). Third, the damping factors output by PRAWNS

are quite reasonable given the small aperture. It is expected that the small decay in energy

of a propagating mode over the 90 meter range aperture would lead to difficulties in

accurate estimation of the attenuation factor. There are two ways to attempt to improve this

accuracy. The first method is to increase the range aperture and allow the energy of a given

mode a greater distance to decay. The second method uses the amplitudes of a given mode

as outlined in figure 2.3.2. The origin is set to some reference range and the PRAWNS

algorithm is used on the range interval R to R'. Since attenuation will cause an exponential

decay of the amplitude of a given mode with respect to range, the amplitude of a particular

mode, A(ro), estimated by PRAWNS at a local reference range, ro, is given by:

A(r0 ) = A(0)exp[ox r0] = A(0)exp[(x R]exp[0t 8r] (2.3.5)

where

R >> 5r

_r=r

r = 0 r=R r=

Fig 2.3.2 Amplitude decay vs range
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While the PRAWNS aperture may be too small to yield accurate attenuation estimates, the

use of amplitude estimates from seperate range blocks may permit a better attenuation

value. For a numerical example, consider the amplitude of mode 1 in the 1002 - 1149 m

and the 1350 - 1497 m range blocks. Using a range difference of 1350 - 1002 = 348 m =

Ar, set up a simple ratio which takes into account the effect of attenuation in the model:
A12= e a Ar where Apq = mode p amplitude in range block q. (2.3.6)

Substituting,
1 (0.1044188)

z= m48 0 1 0 7 6 1 6 9 j =-8.67 E-05 (2.3.7)

Comparing the results in equation (2.3.7) to mode 1 of Table 2.3.1, we see this method is

not a good choice in this trial. This may be due to poor amplitude estimates or a short range

interval.
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Table 2.3.1 SNAP Output for Nantucket Profile

Mode No. Wavenumber (m-I) Attenuation

1 0.9074474 7.995E-05
2 0.8546543 2.422E-04
3 0.7758756 1.067E-03

Table 2.3.2 PRAWNS Output for Nantucket Profile

Total No. of points: 166 Avg. block: 50 pts.
Processing block: 30 Model Order: 10
Overlap: 0 pts. Samp. Range: 3.0000 m.
Starting Range: 1002.0000 m. Final Range: 1149.0000 m.

INDEX WAVENUMBER DAMPING AMPLITUDE PHASE(RAD)

1 0.9074478 -0.0000796 0.1076169 -0.4942496
2 0.8546547 -0.0002414 0.1850737 1.5719849
3 0.7758779 -0.0010739 0.0055408 -1.1877416
4 -0.8612481 -0.0390015 0.0000000 1.5355707
5 -0.6309471 -0.0971785 0.0000136 0.4525263
6 0.4507092 -0.1030366 0.0000168 -1.8049235
7 -0.4826431 -0.1153568 0.0000122 0.2122693
8 -0.3845713 -0.1321304 0.0000194 -0.9443646
9 -0.1642203 -0.1529004 0.0000423 0.2692317
10 0.1153333 -0.1621337 0.0000536 2.5536927

Total No. of points: 166 Avg. block: 50 pts.
Processing block: 30 Model Order: 10
Overlap: 0 pts. Samp. Range: 3.0000 m.
Starting Range: 1350.0000 m. Final Range: 1497.0000 m.

INDEX WAVENUMBER DAMPING AMPLITUDE PIASE(RAD)

1 0.9074471 -0.0000800 0.1044188 -3.0543090
2 0.8546540 -0.0002421 0.1688871 -2.0942594
3 0.7758755 -0.0010671 0.0036974 -0.0749611
4 0.2020056 -0.0030457 0.0000000 -2.3543923
5 0.3843271 -0.0272609 0.0000000 0.6840160
6 -0.5876253 -0.0380173 0.0000000 2.2279577
7 -0.8681644 -0.0567308 0.0000000 -0.643301(0
8 -0.0685432 -0.0614808 0.0000000 0.5810484
9 -0.3724043 -0.0977833 0.0000001 0.9746809
10 -0.4323751 -0.1299475 0,0000001 2.0567591

-34-



As the range between the analysis blocks increases, the decay in energy will be greater and

the attenuation estimate should improve. This alternate method of estimating attenuation is

also prone to noise effects manifested in amplitude estimations.

Because of the isovelocity water column of the Nantucket profile of figure 2.3.2,

the mode shapes in the water column are not distorted by gradients. The mode shapes

provided as part of the SNAP output may be used as a comparison to the Prony analysis

for a vertical array. This was synthesized by using the sound speed profile of figure 2.3.1

but changing the receiver depth. The receiver depth was changed in half meter increments

from 0.5 to 13.5 meters. A range aperture of 375 meters was specified and the PRAWNS

program was used to analyze the modal structure at 500, 1000 and 1400 meters (see figure

2.3.3).

Range aperture 375 m

1 Receiver depth changed in
6.1m 0.5 m depths from 0.5 to

13.5 m.

.,)s:.'::] ~sttom profie of fig 2,.3. L IJ

Fig 2.3.3 Vertical Array of Nantucket Profile
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The resulting amplitudes for each mode were scaled to match the normalized SNAP mode

shapes at a particular depth (10 meters). The resulting close agreement is evident in figure

2.3.4. The larger aperture presents another opportunity to try the attenuation estimation

method in equation (2.3.6). With a range interval of 249 meters and receiver depth of 10

meters, the results are summarized in table 2.3.3:

Table 2.3.3 Attenuation Estimation using Nantucket Profile

Mode No. Amplitude 1 Amplitude 2 Attenuation

1 0.2270556 0.2225807 -7.994E-05
2 0.0687738 0.0647491 -2.422E-04
3 0.0054065 0.0041446 -1.068E-03

The results are much closer to the SNAP results in Table 2.3.1.
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2.4 Summary

The cursory review of normal mode theory of section 2.1 was meant to emphasize

key aspects of the shallow water waveguide problem. A general form for the pressure field

was developed in the form of a modal sum and a continuum. A hard bottom example was

used to demonstrate the form of the pressure field, the asymptotic form of the Hankel

function and the effect of source receiver geometry. The Pekeris example demonrtrated the

discrete spectrum and continuous spectrum regions of more complex bottom models. The

distinction between the discrete and continuous spectrum may be set by the wavenumber of

a "basement" isovelocity halfspace. Attenuation effects were incorporated by a small

imaginary term in the horizontal waverumber, kn.

In section 2.2, the basic three steps of Prony's method were developed. Upon

closer examination of these steps, some of the options and rationale for choosing them

were explained. The algorithm used in the remainder of the paper was presented; the

particular method chosen for further investigation is different from the forms commonly

found in the signal processing literature.

Section 2.3 tailored the modal sum representation of the pressure field into a form

suitable for processing via Prony's method. Two applications of the method were

presented. The first was a straightforward horizontal aray application with a range

aperture of 90 meters on data generated synthetically by SNAP. This application

demonstrated the good agreement of wavenumbers between PRAWNS and SNAP; in

addition, the distinguishing characteristics of propagating modes were presented. The

second application simulated a vertical array by analysis of the same range blocks at

different receiver de,. dis. This example demonstrated use of the PRAWNS mode

amplitudes to obtain vertical eigenfunction shapes and an altcrnate inethod for ol. aining

modc attenuation.



Chapter 3
Prony's Method Evaluation

3.1 Depth Dependent Green's Function
In the previous chapter, the pressure field was represented by a modal sum and

continuum contribution. While the modal nature of sound propagation may be observed in the

pressure field as an interference pattern, this is not the optimum domain for modal analysis. As

the number of modes increases, the interference pattern becomes increasingly complex. An

alternate description of the modal information may be obtained through a Hankel transform of

the pressure field[48-50]. The result of this transformation is known as a depth dependent

Green's function. This section outlines the form of the depth dependent Green's function.

A zero order Hankel transform is defined as[21]:
00

H{ F(r) } = f(kr) = JF(r) J0 (kr r) r dr (3.1.1)
0

With an inverse of:
00

H( f(kr) ) = F(r) = Jf(kr) J0(kr r) kr dkr (3.1.2)
0

That is, the Hankel transform is its own inverse. From equation (2.16), recall,
a_ (rp a2.p. 8(r,)

(r-)+ + k2(z) p = -2 "- (z-zo) (3.1.3)r c-) Or az2

By taking the Hankel transform of both sides, the equation yields an ordinary differential

equation:

+ k 2(z) - k 2 g(kr,z,z) =-2 8(z-zo) (3.1.4)dz 2  rI

In obtaining this equation, the following relationship is used:

ItL drr -F(r) ) k = f(kr) (3.1.5)
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The solution to equation (3.1.4), g(kr,z,zO), is known the depth dependent Green's function.

An analytical solution to the equation may be found by application of Sturm Liouville theory.

For a waveguide with the surface at z--0 and bottom at z=h, the impedance boundary

conditions may be expressed in the form:

Al 0'(0) + BI 0(0) = 0 (3.1.6)

A2 0'(h) + B2 0(h) = 0

Defining the Wronskian, W, as W = Os 0 - ib Os, permits the solution to equation (3.1.4) to be

expressed as:

f -2
g = tW (O s(krnz) Ob(kr,z0) 0: _ z _ z (3.1.7)

g = os(kr,zo) Ob(kr,z) z05 _ z _ h

The determination of the Green's function now requires identifying Ob and Os, which

are two solutions to a Sturm Liouville problem. Both solutions satisfy the homogeneous

equation (3.1.4) and Ob satisfies the bottom boundary condition while Os satisfies the surface

boundary condition. In terms of reflection coefficients, for an isovelocity waveguide, the

solutions at the surface, Os, and bottom, b, the superposition of up and downgoing plane

waves are[9,26]:

Os =A [e- jYz + Rs(kr) e-j Y L] and (3.1.8)

4b=B [eiyz + Rb(kr) ejy(2h-z)]

Substitution of these into the equation for the Green's function, equation (3.1.4), yields:

j[e-J Yz-zO1 + Rs e.JY(z+zo) + Rb ejy 2 h (e-jy(z+zo) + Rs e- JY Iz-zo) (3.1.9)

g =-yl - RbRs eJ2yh]

In the simple waveguide examples of chapter 2, the surface reflection coefficient is Rs I -: ie,

the upper boundary is treated as a pressure release. The expression above holds equally well iII

multilayer waveguides in which the tipper layer boundary condition is ,not constrained tobc a
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pressure release mecha ism. By the definition of the Hankel transform pair given above, the

relationship between the depth dependent Green's function and the pressure field is then[14]:

p(r,z,zo) = j g(kr,z,zo) JO(krr) kr dkr and (3.1.10)
0

00

g(kr,z,zo) = f p(r,z,zo) Jo(krr) r dr
0

The transformation of the pressure field to a depth dependent Green's function is a

particularly useful tool in examining the modal behavior of the waveguide. The depth

dependent Green's function (which will be called the Green's function hereafter), is a function

of the horizontal wavenumber, kr, and the source and receiver depths, zo and z respectively. It

is in the examination of the horizontal wavenumber spectra that the influence of the boundaries

on the modal structure is easily observed.

In chapter 2, the pressure field was also expressed as a sum of a modal portion and a

continuous contribution. Current studies of the normal mode approach have shown this

decomposition carries over to the Green's function in the following manner[25]:
N()

p(r) =jn- an kmH 0 1)(kWr) + p(r) (3.1.11)
n=1

f N
g(ka n 2akr +g~k) (3.1.12)

I: (krgM)

That is, the modal portion of the pressure field is directly related to the modal portion of the

Green's function through a zero order Hankel transform. The coefficient, an, is the residue

(from the Cauchy residue theorem) for a given kr; that is, the coefficient is defined as an =

k l irL (kr - krn) g(kr). An alternate expression for the coefficient in terms of the vertical

eigenfunctions, 11n, is[251:
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an(kr) = Un(ZO) Un(Z) (3.1.13)

p(zo) km

For a Pekeris waveguide, the specific coefficients may be found using:

anr) =sin(yoz) sin(yozo) = (3.1.14)
a kr sin(2yh) .b sin 2(yoh)

-r~ 
4 yo .+j 2yi

where

b = YO kr = km and the subscripts 0 and 1 denote the water column and half
j y h

space respectively.

There are two additional items which should be noted with regard to the Green's

function. The first characteristic concerns the rational form expression for the Green's

function. In equation (3.1.12), the modal portion of the Green's function, gin, is given as:
N

2ankm (3.1.15)
(kr2 - k m)

n=1

where both the numerator and denominator of the expression have zeroes at locations other

than zero and infinity. In signal processing parlance, this is a pole-zero or ARMA

(autoregressive moving average) model. The zeroes of the denominator correspond to

singularities and are called the poles of the system. In the above expression, the poles are

expressed in terms of the horizontal wavenumber and are located at kr = ± kr(aS expected

since the Green's function is an even function). The zeroes of the numerator are the nulls of

the system and are found through the identification of the coefficients an(kr), which may be

done analytically or numerically.

The second fact regarding the Green's function is based on the physical interpretation

of equation (3.1.9). The poles of the equation are functions of the waveguide environment

since the numerator is a function of Rb, Rs, h and kr (recall the horizontal wavenumber, kr, is

related to the vertical wavenumber, y, by kr = -k-2  ). The numerator of the Green's
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function has zeroes which are determined by the waveguide environment and the geometry of

source and receiver. As the source and receiver positions are varied within a given waveguide,

we expect a shift in the zero locations and a corresponding change in the null locations on a

spectral plot of the Green's function. At certain source-receiver geometries, the zero will

cancel a pole and the mode will not propagate.
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3.2 Prony Energy Spectral Density
In the last section, the modal behavior of the waveguide was available for examination

through the Green's function. The Green's function is related to the pressure field through a

zero order Hankel transform. Prony's method is a model parameter estimation approach rather

than a spectral estimation technique. Since Prony's method estimates the system poles ( the

kn) as one of the model variables, we wish to develop a spectral plot which incorporates this

and the other parameter values.

The first step in defining a spectrum for the method is an assumption of the behavior of

the data outside the processing interval. Marple presents three possible spectra which start

from different interpretations of data characteristics[31]. In this study, the data is assumed to

have even pressure characteristics with respect to the origin, that is, p(r) = p(-r). Physically,

this may be justified by considering the symmetry assumptions made in the analytical solution

to the waveguide problem. In chapter 2, a circular symmetry assumption was invoked to allow

removal of 0 dependency through integration. In terms of measurements, if we place our

spatial array at a horizontal range xo from the origin, we would expect the same measurements

if the array was located at -x0 . Simply put, this assumption requires the effects of attenuation,

spreading, etc. to be the same on either side of the origin.

This symmetry is incorporated in the spectrum by assuming a two sided function which

is defined as:
n.

y[n] = vq z for n 0 (3.2.1)
q=O

= Vq (zq)- n for n < 0

q=O

The z-transform of this model is[5 1]:
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Y(z) 1 ZqZ 1 (ZqZ)-1 (3.2.2)

q=,O

Using the definitions of the roots zq and Zq :

Zq = exp(cqT +j kqT) (3.2.3)
(z*)-I = exp(-xqT + j kqT) (3.2.4)

and assuming the spectral radius of the poles is less than one, a discrete time Fourier transform

(DTFT) may be found. The DTFT is:

SI(kr) = T Y(z) 1z = exp kr T) (3.2.5)

p-i

= j vq [1- [exp T [exp (aqT) - exp(-ctqT) ]expo[krq - krT) 1
I ep(cqT) - exp(-czqT) ]expo[krq - kr]T) + expoj2 krq-knl)

q--o

The energy spectral density (ESD) is found by the magnitude squared of the DTFI, ie S(kr) =

IS l(kr)12. We will refer to this function as the ESD in the rest of the thesis.

The z transform of the two sided function demonstrates a characteristic of the Prony

method; the model is an all pole system. Rewriting the z transform of equation (3.2.1) in

terms of a common denominator:
(ZZ)- 0-(1- ZqZ')

( ZqZ)") ) (3.2.6)

q /

p-1

(L - Zqz - I) (I - (ZqZ)'l)j

q=o

In the above representation, it is readily apparent the numerator of the z transform has no

zeroes except at zero and infinity for all q.
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The all pole nature of the Prony ESD dictates the appearance of the spectral plot. The

singularities of the system, the poles, yield a typical spectrum which has sharp peaks. In

contrast, an all zero (MA or FIR) filter has sharp nulls. The pole-zero model (ARMA) has both

sharp nulls and peaks in the spectral plot[51].

A model

Frequrcy or Wavenumber

MA odel

Finqocncy or Wawmjambcr

ARMA model

Frequency oc Wavenumber

Fig 3.2.1 Comparison of typical AR, MA and ARMA spectra

-46-



In the last section, the pole-zero nature of the Green's function was evident. Indeed, a

plot of the Green's function for synthetically generated data confirms this characteristic (see,

for example, fig 3.3.3). Instead of taking a Hankel transform of the pressure field, the Prony

ESD is achieved by a DTF-T of the square root of the range times the modal portion of the

discrete pressure field. While the ESD of the resulting all pole model not the Green's function,

it is related to it. The Wold decomposition theory states that we may model an ARMA or MA

filter with an infinite order AR filter[32]. Given the constraint of a finite filter, the relationship

between the AR filter coefficients and the ARMA coefficients and the AR filter length should be

explored. Consider the Green's function as an ARMA model of s poles and r zeroes. Then,

using the analogy of a filter driven by a unit impulse:
r

Eb[m] z-m
B(z) m=0 (3.2.8)

Ea[q] z-q
q=O

with b[0] = a[0] = 1. To match this with an all pole filter specified by:
V(z) = 1-1 - (3.2.9)

Eg[w] z-w
w=O

requires H(z) = V(z). Substituting the above expressions:
13(z) 1D- I-- = B(z) G(z) = D(z) (3.2.10)
D~z G ;(z)

The multiplication in the z domain is equivalent to convolution in the time domain, so:

b[n] * gin] = d[n] =* J(b[kI g[n-k]) = din] (3.2.11)
k=-o0

Since there are s poles in the ARMA model, d[n] = 0 for n > s and

gin] =X(b[k] gin-k]) +d[n] 0 < n 5 s (3.2.12)
k=l

r
=- Y(b[k] gin-k]) n >s

k=1
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This expression assumes g[n] is causal and g[0] = 1. The validity limits for the expressions

are due to the number of ARMA poles while the number of ARMA zeroes defines the

convolution length. In the AR approximation, these g[n], the all pole filter coefficients, are set

equal to zero for n > r+s. As shown above, the poles and zeroes of the ARMA filter influence

the output's first s points. After that, only the poles influence the system output. To determine

the ARMA parameters given an AR approximation, the above equations may be used to find

the numerator and denominator terms using r+s+l output points:

c[s] c[s-1] ... c[s-r+l] [1] c[p+1]

c[s+l] c[s] ... c[s-r+2] b[2] c[p+2]
(3.2.13)

c[s+r -1] c[p+q-2] ... c[p] b[r] c[p+q]

and
r

a[n] = c[n] + Fb[k]c[n-k (3.2.14)
k=1

In other words, the expressions for g[n] are forcing these coefficients to match the first r+s+ I

coefficients of the infinite length inverse ARMA polynomial X(z) where
00

X(z) = D(z)x[k]k (3.2.15)
k=0

The last section contained a description of the Green's function as a superposition of a modal

and continuous portion. The modal sum in the Green's function may be expressed by[25]:
N

gm(kr) 2ankm (3.2.16)
(k - kn)

n=l

where an = Un(z) Un(Z)
p(zo) krn

This may be cast in the form of an ARMA model with kr replaced by z. lowever, the

expression for the coefficients an is, in general, not trivial and requires substitutions and/or
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series expansions to yield a polynomial form in the numerator. A direct comparision of the

Green's function and Prony ESD is not useful; the quantities are not the same since the

Green's function is an ARMA process and the Prony ESD is an AR process. The poles of the

Green's function will, however mathc those of the Prony ESD; the ESD will also yield relative

energy levels of the system modes. The Green's function is related to the pressure field by a

zero order Hankel transform while the Prony ESD is related to the square root of the range

times the pressure field by a discrete time Fourier transform.

The ESD uses all of the information generated by the Prony estimation algorithm. This

presentation has two distinct advantages. First, the tabular form is transformed to a graphical

representation. The total effect of all model parameters is summarized in a concise output

which allows easy assimilation of the algorithm output. Second, the ESD is a tool which

allows comparision of range blocks. The present algorithm has no constraints on continuity of

parameter values between subsequent range blocks; each block is evaluated as a "stand alone"

entity. Changes in bathymetry and waveguide boundaries may be observed in shifts in the

ESD peaks and levels between blocks of interest. This range dependent performance is further

explored in the next chapter.
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3.3 Algorithm Performance in Range Independent
Waveguides

In this section, we will explore the application of the Prony algorithm to a synthetically

generated pressure field. The algorithm explored was outlined in chapter two; in brief, it is a

three step process. The first step consists of obtaining a least squares (LS) fit of the

polynomial coefficients for a specified model order. After using a QR decomposition to obtain

these coefficients, a numerical rooting program finds the roots of the polynomial. The last step

is the LS fit of the data to the remaining model parameters. The parameters specified by the

users include the starting and stopping range, the model order, the processing block size,

processing block overlap and averaging block size. The relationship of the last three variables

is outlined below and in figure 3.3.1.

Startin Ending
Range processin Processin Range

S Overlap
Processing Aribo

block Averaging block

Fig 3.3.1 Range aperture block constituents

The processing block is the number of points used for each three step iteration of the method.

The processing block overlap allows the user to set the starting and stopping ranges of each

block so that adjacent blocks may overlap one another. The averaging block size permits the
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parameter values within a given range interval to be averaged together. In figure 3.3.1, an

averaging block is shown with three processing blocks overlapping by one third. It should be

emphasized that this is not an averaging of spectra as is usually encountered in the signal

processing literature. Rather, the averaging is among the parameter values; it takes place

before the ESD is calculated.

Before exploring the utility of the ESD in evaluating the Prony algorithm performance,

we will describe another analysis tool which may be used to obtain a quantitative assessment of

the modelling process. As shown in figure 3.3.2 below, the observed data (the square root of

the range times the sampled pressure field) is assumed to be the output of an ARMA filter. The

all pole filter of Prony's method uses the observed data, y[n], to estimate the Prony filter

coefficients, V(z). Given the all pole filter, V(z), we want to develop a method of assessing

how well the actual data fits the all pole model. If sin], the output of the Prony filter, was used
1

as input of the inverse filter, G(z) = -- the output, r[n], would be a unit impulse[5 1].

Instead of using s[n] as input to G(z), the observed data is used. If H(z) was, in fact, all pole,

and matched by V(z), then the output of G(z) would be an impulse of height equal to the gain

term of H(z) (because V(z) assumes a gain of 1). If H(z) is an ARMA process and/or there is

noise in the system, then using y[n] as input to the inverse filter will yield a data sequence

which has nonzero terms at other than the origin. The residue is the normalized total energy of

this sequence: R r[n] r*[n]. The smaller the residue, the better the actual data fits an
n=1

all pole model since there is less energy in the residual. The last statement requires a

qualification for completeness. The residue information yields a quantitative measurement of

observed data fit to an all pole model; it makes no statement regarding the accuracy of the

parameter values to the actual wavcguide values.
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Actual ARMA process All pole model

B(z) A 1[n] s[n]

H(z) = D.zm V(z)HD(z)/-
Residue determination

y[n] r[n]
yEn] G(Z) 1

Fig 3.3.2 Residue determination

With these caveats, it is acceptable to add the residue to the performance evaluation

tools. The four tools which will be used are the ESD, residue, wavenumber vs. range and pole

positions in the complex z plane. Each of these serves to highlight specific characteristics of

the waveguide performance. The ESD is best used to summarize the modal behavior of the

system including range depexident features (which will be covered in chapter 4). The residue

and wavenumber plots are useful for determining when a "good" system order is reached and

the pole plots assist in identifying actual modes from the arbitrary system poles.

One of the classical difficulties facing the researcher implementing Prony's method is

the specification of a model order. This parameter is distinct from the system order. The

system order (the number of modes actually propagating) may be obtained by inspection or

numerically. The Green's function (which is generated by numerically Hankel transforming

the pressure field) may be used to estimate the number of system modes. However, large

apertures are necessary for accurate discrete Hankel transform results. To numerically extract

the number of system modes, an SVD of the signal matrix is the recommended

procedure[36,37,43-441. Ordering of the singular values by magnitude will illustrate the drop

in singular value magnitude for singular values greater than the actual system order ( ic, if the
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model order is ten and the system order is six, the first six largest singular values will be

significantly higher than the remaining singular values). The addition of noise to the system

complicates both of these procedures.

The specification of a "good" model order is more of an art. If the order specified is

too low, the resulting parameter estimation will be poor as the system energy is constrained to

be distributed among the specified order. Empirically, this situation results in the identification

of some of the actual modes, generally the strongest (which are determined by source-receiver

geometry). The sytem description is, nonetheless, incomplete. If, on the other hand, the

model order is too high, the output may contain spurious peaks and/or the signal matrix may be

singular[32]. While the noise and non modal components of the energy field ( the continuum)

may prevent the matrix from actually becoming singular, the matrix becomes more ill

conditioned as order increases. This may make numerical determination of the actual system

order easier since the larger singular values get larger and the smaller singular values get

smaller near singularity[40,41]. Since we do not specifically use the actual system order, this

small positive feature of largely overspecified models is negated by the problems associated

with decomposition of the ill conditioned matrix. The spurious peaks are usually of low

energy and have little effect. In some trials, the small but finite energy in these poles robbed

the valid modes of energy resulting in a poorer fit of data to an all pole model. The

development of an analytical method to determine an appropriate model order is a current

research effort. In a recent paper, Braun and Ram describe an SVD approach which yields

effective results especially in noisy situations[6].

The approach used in this study to examine the effect of model order on parameter

estimation was iterative in nature. Two different schemes were used. In the first, the model

order was increased and the total residue for the range interval was obtained. The residue

dropped to a plateau after a certain amount of overdetermination. The second scheme examined

parameter "wander" with respect to increases in model order. Both pole plots and wavenumbcr
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vs. range plots were examined with increases in model order. Initially, if the model was

underspecified in order, the wavenumbers and other parameters were found to change slightly

as the order was increased. At a certain point in overspecification, the wavenumber change

was negligible for increase in model order. The pole plot proved to be more effective in

determining actual modes rather than in assisting in parameter wander identification.

In exercising the algorithm, two bottom models were chosen. The f-ist was a Nantucket

type bottom with source frequencies of 140 and 220 Hz. The second bottom profile was

similar to the type of bottom found off the coast of Corpus Christi with source frequencies of

50 and 140 Hz. The bottom models were chosen because they approximated the experimental

environments. The sound fields were generated using the SAFARI code which utilizes a

propagator matrix approach[55,561. Unlike SNAP, continuum contributions are addressed by

SAFARI. Because of the continuum contribution, we expect the all pole model not to fit the

pressure field as well as a SNAP generated data set. The continuum effects are near field; at

long ranges, their effect should be quite small.

In the Nantucket model, the bottom profile of figure 2.3.1 was used with an attenuation

of 0.07 dB/X. The three propagating modes are well defined and widely spaced; this bottom is

not particularly sensitive to model parameter variations in model order, processing block,

averaging or overlap. Nonetheless, the bottom model serves to illustrate some basic

performance aspects of the algorithm in a "realistic" (but still noisefree) environment. The ESD

provides a useful tool for the overall modal behaivor of the waveguide. In this respect, the

ESD is comparable to the Green's function (figure 3.3.3) since it indicates energy in the

various modes. In figure 3.3.4, a small aperture model is used to estimate the parameters for

the ESD. The total number of points needed for each range block is 15 points at 3.2 meter

spacing.
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Fig 3.3.4 ESD of PRAWNS output on Nantucket profile at 4000 m

(15 points, 0 avg, 3.2 m spacing, model order 7)

The accuracy of the PRAWNS algorithm output vs the Green's function pole locations

is best seen in table 3.3.1. The Green's function pole locations were found through use of a

peak finding routine. The PRAWNS wavenumbers are the tabular values of the model

specified in figure 3.3.4 at 4000 meters. The range of 4000 meters refers to the first

processing block which contains that user specified range; the 4000 meter point may occur

anywhere within this processing block. This manner of specifying a range will be the

convention in the rest of this thesis.

Table 3.3.1 Comparision of PRAWNS and Green's function pole locations

(Nantucket profile)

Mode Horizontal Wavenumber (m- 1 )

PRAWNS Green's Function

1 0.9077464 0.907701

2 0.8569943 0.856988

3 0.7822649 0.782204

The Nantucket profile provides the opportunity to demonstrate the utility of the pole

plots. This is a Z plane representation of the wavenumber and damping parameters using the

information generated as follows:
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Pole magnitude = Zreai 2 + Zimag" (3.3.1)
Pole angle = tan-lI - )

where Zreai = edamping * T cos( wavenumber * T)

Zimnag = edamping * T sin( wavenumber * T)

for each damping and wavenumber term. Identifying valid modes among the arbitrary poles

estimated by the overspecified system is performed by recognizing that the valid modes won't

change with variations in order while the arbitrary modes will. Figure 3.3.5 illustrates the

model poles for various orders and the overlap situation which allows pole identification.

The use of residues as a method of determining a "good" model order was not

particularly successful in this example. A plot of the total residue versus model order is given

in figure 3.3.6. Note the drop in residue level after model order 15. This would indicate that

the parameter estimation is closest to an all pole model after this order. However, it says

nothing regarding the accuracy of the parameters.
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Fig 3.3.6 Total residue vs. model order for Nantucket profile

(50 pt, 3.2 m spacing, 0 overlap)

An examination of the wavenumber for a particular mode as model order varies demonstrates

the conservative nature of using the breakpoint to determine overspecification. Figure 3.3.7

demonstrates the need for overspecifying model order. The wavenumber of the third mode for
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a fourth order model is erratic and does not agree with the wavenumbers of the higher order

model.

1.00- Mode 1

0.80, _ -Mode 2

' Mode 3 - Order 20 Mode I
" 0.60 - Order 20 Mode 20- Order 20 Mode 3

-4 [ Order4Model

cc ~Order 4Mode 1
0.20- Order 4 Mode 2

SOrder 4Mode 3
o 0.00

o 3000 4000 5000

Range (m)

Fig 3.3.7 Comparision of wavenumbers for model orders 4 and 20
(Nantucket profile,50 pt, 3.2 m spacing, 0 overlap)

While figure 3.3.7 indicates the need to overspecify, we can see in figure 3.3.8 that the model

order need not be greater than 15 to obtain excellent wavenumber estimation.of using the

residue to mark the breaxpui"' foi stecifying the amount of overdetermination of model order.

The Nantucket pressure field was found to be insensitive to the amount of overlap,

averaging and aperture. The use of overlap and averaging is an aid in parameter estimation in

noise; since the system was not corrupted by noise, the averaging scheme had no effects on the

output. The absence of noise is responsible for the wide tolerance in aperture size. The effects

of the continuum are quite small at the range of interest (3000 m); the system was essentially a

pure normal mode system.
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Fig 3.3.8 Comparision of 7 and 20 order model wavenumbers
(Nantucket profile, 50 pt, 3.2 m spacing, 0 overlap)

In the Corpus Christi model (fig 3.3.9), a deeper water depth was used (30 m) with a

bottom density of 1.56 g/cm 3 and bottom attenuation of 0.07 db/. The resulting modes are

closely spaced and more numerous. The selection of parameters was more critical in this

situation than for the Nantucket case. Using an aperture of 340 m (100 pts at 3.4 m spacing)

and model order 15, the ESD of figure 3.3.11 is compared to the Green's function of the

pressure data in figure 3.3.10.
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Fig 3.3.9 Corpus Christi SVP

The ESD provides a quick method of examining the overall effects of a parameter change. In

figure 3.3.12, the aperture is reduced to 50 points with all other parameters constant. The six

modes of figure 3.3.11 have been reduced to three. In some cases, the number of points may

be increased by performing a spline fit with a finer grid.
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Fig 3.3.11 ESD of 100 point sample at 4000 m for Corpus Christi profile
(3.4 m spacing, model order 15)
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Fig 3.3.12 ESD of 50 point sample at 4000 n for Corpus Christi profile

(3.4 m spacing, model order 15)

Table 3.3.2 summarizes the accuracy of the PRAWNS wavenumber estimates compared to the

Green's function. As in the Nantucket case, the Green function peaks were found through a

peak searching routine. The PRAWNS wavenumbers are taken at 4000 m of a model order

24, 100 point trial.
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Table 3.3.2 Comparision of PRAWNS and Green's function pole locations
(Corpus Christi profile)

Mode Horizontal Wavenumber (m- 1)

PRAWNS Green's Function

1 0.8932641 0.892875

2 0.8857910 0.886250

3 0.8708455 0.872031

4 0.8505248 0.869968

5 0.8283763 0.828010

6 0.8137148 0.813453

7 0.8098074 0.803125

In the beginning of the section, mention was made of the iterative methods used to

estimate model order. The Nantucket profile was not particularly sensitive to model order

specification. The Corpus Christi profile[81 provides an opportunity to explore the agreement

between the two methods. The first approach in model order determination involved

measuring the total residue for a range interval as the model order is increased. The residue is

expected to drop to a lower level after a specific model order. This order represents the

breakpoint; any model order higher than this should yield good results. As we have pointed

out previously, a good overall fit to an all pole model does not necessarily imply accurate

parameter estimations but the method empirically does yield valid results as far as model order

selection is concerned. Figure 3.3.13 illustrates the application of this technique on an 340 m

aperture (100 points at 3.4 m spacing) for an arbitrary range interval.
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Total residue vs model order
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. 0.002

0.001-

0.000

15 20 25 30 35
Model Order

Fig 3.3.13 Total residue vs model order for Corpus Christi profile

(100 pt, 3.4 m spacing, 0 overlap)

The second approach for determining model order entails tracking the wavenumbers as

the model order is increased. This method assumes that after a certain order is achieved, all of

the propagating modes will be found and further increases in order will yield only arbitrary

poles rather than valid modes. Figure 3.3.14 illustrates the point; the seven modes found by

PRAWNS are plotted for varying model order. The two approaches are in agreement in this

example. Both recommend specification of a model order higher than 25 (actually, 23 in the

wavenumber scheme). The close agreement supports the use of either technique; in the

Nantucket case, the wavenumber approach worked much better.
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Fig 3.3.14 PRAWNS modes vs model order for Corpus Christi profile

(100 pt, 3.4 m spacing, 0 overlap)

The graph also illustrates a shortcoming of the ESD plot. The ESD shows only six modes due

to the damping effect (which controls the width of the ESD plot peaks) and a weak seventh

mode amplitude. The seven wavenumbers found by PRAWNS algorithm are ccntained in the

ESD graph; this is not evident until the tabular results are compared to the Green's function

(which shows seven modes).

The pole plots for varying orders (figure 3.3.15) illustrate the pole wander effect of

specifying the model order less than the system order ( shown for order = 5) or specifying a

model order which is higher than the actual order but not high enough (order =10). The slight

variations in the pole locations are best seen in an overlap situation as depicted in figure 3.3.16.

Even though model order 10 appears acceptable, close examination shows aberrations with

respect to higher model order pole locations.
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Fig 3.3.15 Pole plotCrps hrida forvrin model orders
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Fig 3.3.15 
Pole plots of Corpus 

Christi 
data for varying 

model 
orders

(100 pt, 3.4 m spacing, 
0 overlap)
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Pole plot for model order 15
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150 30

180 0.5 - 0 - 0.5 0

240 300
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Pole plot for model order 35
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210 D 330
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Fig 3.3.15(cont.) Pole plots of Corpus Christi data for varying model orders
(100 pt, 3.4 m spacing, 0 overlap)
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Comparision of model order 10 and 25

90150 

30

E 10 mode
1 8 0 0 .5 -0 -- 0.5 0 0 2 5 m o d e

240 
300

270

Fig 3.3.16 Overlay of model order 10 and 25 poles

In addition to model order selection, the effect of the amount of overlap on parameter

estimation was examined. Overlap did not affect the resultant poles for actual modes. There

was slight variation among the arbitrary poles with changes in overlap but there was no

correlation. Figure 3.3.17 illustrates the invariance for the case of a 100 point aperture (3.4 m

spacing) 15 mode model. Figure 3.3.18 demonstrates the same behavior for a different

aperture (200 points at 3.4 m spacing).
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4 15 mode 0%
"4-15 mode 25%

0 15 mode 50%

15 mode 75%
" 15 mode 90%

o 0 5 10 15
Wavenumber Index

Fig 3.3.17 Overlap comparision of wavenumbers for model order 15
(Corpus Christi profile, 100 pt, 3.4 m spacing)

0% overlap
"W 25% overlap

0 ""50% overlap

"4- 75% overlap
"'4 90% overlap

NI

0 10 20 30
Wavenumber index

Fig 3.3.18 Overlap comparision of wavenumbers for model order 30

(Corpus Christi profile, 200 pt, 3.4 m spacing)

The arbitrary poles of the system varied with aperture size; indeed, the variation among these

poles was even greater when model order and aperture were varied (figure 3.3.19). The
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wavenumber values for the propagating modes did not change since both the aperture and

model order were large enough for an accurate estimation.

-1~

S30 mode 50%
15 mode 50%

o 0 10 20 30

Wavenumber index

Fig 3.3.19 Comparision of 15 and 30 mode model wavenumbers

(Corpus profile,15 mode=*100 pt, 30 mode= 200 pt, 3.4 m spacing)

Averaging had an interesting effect on the PRAWNS output. When averaging was

used, the wavenumber variation was quite small. Recall that the averaging is not a frequency

domain periodogram but rather an average of the discrete parameter components according to

wavenumber. This process had little effect on the wavenumbers as illustrated in figure 3.3.20.
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0-c - 1- 50 pt avg
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0 5 10 15 20
Wavenumber index

Fig 3.3.20 Wavenumber comparision for various averaging blocks

( Corpus Christi, 50 point proc. block, 0 overlap, model order 20)

Figure 3.3.21 illustrates the drop in total residue as the number of processing blocks averaged

increases. The better fit to an all pole model may result in the averaging scheme being used as

an effective tool in a noisy environment.

0.015

V0 0.010-

0.005

0.000
50 100 150 200
Averaging interval (points)

Fig 3.3.21 Wavenumber comparision for various averaging blocks
(Corpus Christi, 50 point processing block, 0 overlap and model order 20)
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3.4 Prony's Method in a Noisy Environment
The feasibility of Prony's method with synthetically generated sound pressure fields

has been demonstrated in the previous section. A major artificiality which has more effect than

the approximations made in the synthetic pressure field generation algorithms is the absence of

noise in the data. The experimental setup described in the first chapter is rife with opportunities

for data corruption from measurement error, environmental sources and processing

assumptions. This, then, is the ultimate test for the algorithm; how well does it perform in the

real world?

Historically, Prony's method is particularly vulnerable to noise[3,4,43,44].

Methods such as the covariance or autocorrelation approaches discussed in chapter 2 for the

first step of the process provide smoothing of data. The signal matrix approach used here doe's

not provide any filtering except through the interpolation scheme used to obtain an evenly

spaced set of data points. As a quantitative measure of the effects of noise, a Gaussian normal

distribution routine (adapted from IMSL routine GGNML) was used[57]. The synthetic

pressure field (generated by SAFARI) was corrupted with user set levels of noise. The effects

oic the noise were easily compensated for until the SNR reached 30 dB. The compensation

took the form of larger apertures and use of overlap and averaging, and increases in model

order. Overlapping was found effective up to approximately the 50% level; ie, each processing

block overlapped the other by 50% and the results were averaged. At levels higher than 50%,

the additional overlap did not provide better results. The wavenumber degradation with respect

to noise is shown in figures 3.4.1 through 3.4.4. In this particular example, compensation for

the noise addition was through increases in model order. Note the better estimation of the

higher order models at lower SNR. The other compensation used in conjunction with this was

increasing the aperture size. Below a certain level, which was between 20 and 30 d, the

compensation did not correct for the effects of noise. Other preprocessing techniques are

necessary to obtain satisfactory results at the higher noise levels. It is interesting to note the
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degradation with respect to SNR is lowest for the lowest order modes although with the

source-receiver geometry configuration of figure 2.3.1, at 220 Hz, mode 2 has the strongest

amplitude as seen in figure 3.3.3.

|1.0-

0.8

CZ 0.6

S0.4
0.2 .

0.0"

1 2 3
o U 6 mode no noise Mode number

S6 mode 70 dB
E0 6mode50dB
[ 6mode30dB
r 6 mode 20 dB

S6 mode 10 dB

Fig 3.4.1 Wavenumber degradation for model order 6 of Nantucket profile
(50 pt, 3.4 m spacing, model order 6, 50% overlap)
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- 0.0
12 3

U 8 mode no noise Mode number
8 8mode 70dB
8 8mode 50dB
8 8mode 30dB
8l mode 20dB

Fig 3.4.2 Wavenumber degradation for model order 8 of Nantucket profile

(50 pt, 3.4 m spacing, model order 8, 50% overlap)

1.0-

~0.8-

0.6-

S0.2

- 0.0
1 2 3

N * 10 mode 0 noise Mode number
10 lmode 70dB

El 10mode530dB
El 10mode3O0dB
El 10mode210dB3

Fig 3.4.3 Wavenumber degradation for model order 10 of Nantucket profile

(50 pt, 3.4 m spacing, Model order 10, 50% overlap)
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0 0.6-
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C 0.2

0.0
1 2 3

o U 15 mode 0 noise Mode number
N" . P 15 mode 70 dB

15 mode 50 dB

S15 mode 30 dB
" 15 mode 20 dB
I 15 mode 10 dB

Fig 3.4.4 Wavenumber degradation for model order 15 of Nantucket profile
(50 pt, 3.4 m spacing, model order 15, 50% overlap)

Application of Prony's method to experimental data provides insight into the

shortcomings of the present algorithm. The first set of field data was collected near Nantucket

Island, MA in 1984. The bathymetry for the experiment is shown in figure 3.4.5. Note the

depth change at approximately 600 m. This change in waveguide dimensions should lead to a

shift in modal peaks. Changes in the bottom sound speed profile will also affect pole values.

-77-



~14.0-

1Source depth 6.1 m
*Z 10.0- ,

100

S 6.0 ]'6.8 m from bottom (BODIS 2)43 .0 !
U 4.0- 1.5 m from bottom (I3ODIS 1)

4 2.0
S 0.0- . , . , " , "

0 200 400 600 800 1000 1200 1400
Range (m)

Fig 3.4.5 Nantucket bathymetry

The Green's function for this region is shown in figures 3.4.6 and 3.4.7 for the upper

hydrophone at 140 and 220 Hz respectively. The Green's function was obtained by

interpolating the data onto an evenly spaced grid and numerically Hankel transforming the

entire data set. This assumes boundary condition invariance throughout the region of interest.

From the bathymetry plot, it is obvious this condition is not met. The consequences of this is a

spectrum with split modes (one set of modes before the bottom drop and one set after the drop)

or smearing.
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For Prony's method on the same data, the short aperture allows a much better

approximation to range invariance. An aperture of 64 meters (100 points at .64 m spacing)

was chosen to exercise the algorithm for the 140 Hz and 220 Hz data sets. Since there is no

"ground truth" for absolute comparision, the output of the PRAWNS code is best evaluated by

comparing the two hydrophones for the same frequency. The different placement of the

receivers changes the amount of energy in the modes but we expect the two ESDs to be similar.

Figures 3.4.8 and 3.4.9 illustrate the good agreement for the 140 Hz. case while figures

3.4.10 and 3.4.11 show the results of the 220 Hz case. The agreement between the

corresponding hydrophones is obvious.
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The Corpus Christi bathymetry is outlined in figure 3.4.12[24]. The frequencies used

in this experiment were 50 Hz and 140 Hz. The first hydrophone was moored 1.5 m from the

bottom, the second was 30 m from the bottom. The water column depth at the receivers was

62.3 m. The Green's function for each frequency is shown for the upper hydrophones

(BODIS 2) in figures 3.4.13 and 3.4.14. Figures 3.4.15 through 3.4.18 illustrate the

PRAWNS outputs for the experiment. The agreement between the hydrophones is again quite

good.

60.00 ourcedepth9.14m \ /

~50.00-0
40.00

30.00 Mk- 30 m from bottom (BODIS 2)

20.00

~ 1.00 1.5 m from bottom (BODIS 1)

10.00

0 1000 2000 3000 4000 5000
Range (m)

Fig 3.4.12 Corpus Christi bathymetry

The shortcomings of the present algorithm lie not in inconsistent results but rather in the

lack of robust processing in noise. The modes are smeared together on the ESD plots. An

additional pr -processing step is required to reduce the sensitivity of the method to noise.

Chapter 5 contains one such proposed scheme for improved performance in noise.
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3.5 Summary
This .,hapter introduced the energy spectral density (ESD) which may be used as a tool

sirril. to a plot of the Green's function. The Green's function may be modelled as an ARMA

process while the ESD is an AR process. The advantage of the ESD in analysis using Prony's

method is that the ESD provides a compact view of the effects of all of the estimated parameters

in the range block of interest. The effect of high damping is a broad peak; since virtual modes

may be modelled as highly damped propagating modes, limited tracking of virtual modes is

possible.

Another tool used in the performance analysis is the residue which measures the fit of

the observed data to an all pole model via an inverse filter. A low residue number indicates a

good fit; this does not necessarily indicate accurate results. Empirically, it was found that

examining the residue with respect to model order did result in good parameter estimates.

While the plateau was inaccurate in the first case (Nantucket profile), it matched well with the

the other model order selection effort in the second case (Corpus Christi). The second method

for model order selection entailed observing pole "wander" and assumed the wavenumbers or

poles would stop changing as model order was increased beyond a "breakpoint" order.

The sensitivity of the algorithm to input parameters leads to a group of empirically

derived guidelines for applying Prony's method to a set of evenly spaced data. The first step is

selection of a model order. Empirically,we found the model order should be two to three times

the actual system order. This agrees with other investigators' results[ 32]. The actual system

order may be obtained by inspection (from the numerically obtained Green's function) or

numerically (SVD breakpoint identification). The first method is sensitive to aperture size and

both of these approaches suffer in the presence of noise. The iterative schemes to obtain model

order used in this study were based on residue and wavenumber evolution with changes in

model order. Once the model order is identified, an aperture should be chosen. The

processing block, as mcasured in points, must be more than the theoretical low limit of twice
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the model order, however, if the aperture is this small, the model order large and the data is

noiseless, the matrix is likely to be singular. The upper limit of the aperture is the range

interval of interest and the capabilities of the QR and rooting implimentations. The overlap and

averaging are constrained by the processing and aperture sizes and are not particularly

significant compared to the other parameters.

The Prony algorithm does suffer from noise corruption below 30 dBSNR. Since

experimental data is frequently below this signal strength, some action is necessary to provide

acceptable results. The runs made on the data demonstrate the correlation of results between

the two hydrophones, but the ESD does not indicate the modes seen in the Green's function.

One can either try more points (by splining), adjust the aperture and overlap/averaging or

preprocess the data. The preprocessing may take the form of a filter or other noise reduction

technique such as an SVD based scheme. Past research has demonstrated a tendency for the

equations to become more ill conditioned as the sampling rate increases[63].
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4.1 Range Dependent Performance

In the previous sections, we made the assumption that the environment was

horizontally stratified. This range independent constraint is not particularly limiting

although natural occurances of pure stratification are unlikely. This section will examine

the performance of the Prony algorithm in two cases of waveguide range dependence[68].

The justification for application of the high resolution technique is based on finding local

modes in an adiabatic environment.

A phenomenon associated with range dependent waveguides is coupled modes, in

which the energy of a particular mode may be transferred to another mode[59,61]. A brief

development of the theory will serve to identify the consequences of ignoring mode

coupling. Using the ability to expand an arbitrary function in terms of eigenfunctions, we

define
00

p(r,z) =YRn(r) 4n(z,r) (4.1.1)
n=1

If the assumed solution is substituted into the equation:

V2 p(r,z) + k2 (r,z)p(r,z) = 0 (4.1.2)

and angular symmetry is assumed, then the equation in cylindrical coordinates is:

a2n RO~4, Rna4 OO~Rri a20n (a2n 2

n

(4.1.3)

Utilizing the properties of a complete orthonormal set, the orthogonal eigenfunctions will

satisfy:

f p(z) On(z,r) nj(z,r) dz = 6nm (4.1.4)

Multiplying equation (4.1.3) by p(z) 4,m(z,r) and integrating with respect to depth, we

obtain:
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d2Rm idRm 2 illr II I l (.
dr2  r d+k Rm A Amnrn + d

n

where Amn(r) and Bmn(r) are coupling coefficients defined as:
h

Amn(r) = z) a2(zr) Om(z,r) dz (4.1.6)
jp0(z) ar2

0
h

Bmn(r) = jn() ar () m(z,r) dz

This yields the set of coupled equations for Rm(r). The boundary conditions become more

complex and are stated by Boyles as the radiation condition in the form[ 14]:
._ T[-' --jkrnRn]= 0 (4.1.7)

and for the source located at r = 0:
lim r dRn(e) I n(0,0)(S  -= *(,)(4.1.8)

27c pO(O)

The coupled equations describe the exchange of energy between the modes. As the

medium approaches the horizontally stratified model of the previous sections, the coupling

coefficients approach zero[59].

In certain situations, mode coupling is assumed not to occur; this is known as the

adiabatic approximation. Each mode retains its initial energy; if the mode is cutoff, it's

energy is lost rather than transferred to the propagating modes. By an adiabatic change in a

parameter, we mean the parameter does not vary locally; for example, using sound speed,

c, as the adiabatic parameter:
ac
r;--40 locally and (4.1.9)
R

rT-dr = Ac for a large R
0
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This assumption holds quite well in slowly changing environments. An additional

assumption made in the derivation of coupled mode theory is that of angular independence

(cylindrical symmetry). This is not strictly true, such as in a coastal wedge situation, but

the approximation is frequently used because of the small slopes involved.

A solution to equation (4.1.2) may be found by applying the WKB approximation

in range to the differential equation for R. The WKB method assumes a slowly varying

medium and neglects the second derivative terms since they are negligible with respect to

the lower order terms. Defining a new function, Fn(r) = Jf Rn(r) and applying the

adiabatic approximation (no mode coupling) the new equation is:

Z)Fm(r) r[ 2 (r)+T + Mk2(r+ 4]Fm(r) = 0 (4.1.10)

By neglecting the second term in the brackets and using the asymptotic form of the Hankel

function, the acoustic pressure field is[62]:

p(z,r) = un(Z0,O) un(z,r) 1e(if km dr) (4, 1. 11)
n

The exponential term with the integral is a phase accumulation mechanism. As the km

change for each range interval of interest, the rate of phase accumulation changes.

The application of Prony's method to small range apertures is made within the

context of the adiabatic approximation. The parameters estimated and the ensuing ESD are

valid only for the interval of interest; there is no system constraint to join the analysis of

one section to that of adjoining range intervals. Within each range interval, the waveguide

parameters, including bathymetry, are assumed to be constant. Changes in the waveguide

boundary conditions will result in a smearing of the estimated parameters and ESD.

Conventional spectrum estimation techniques are frequent victims of changes in waveguide

boundary conditions over the interval of interest. In Fourier techniques, the resolution is

related to the length of the data segment. In order to achieve high resolution, large
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apertures are used; the assumption of constant boundary conditions and environmental

conditions under these circumstances is poor. The application of high resolution

techniques to the same environment permits a smaller aperture to be used and the locally

range independent assumptions should be easier to justify.

In an effort to examine the performance of the Prony algorithm in an environment

with range dependencies, two test environments are developed. The first contains a

bathymetry change; it consists of a parallel plate region which evolves into an upslope

wedge section. In the second, the bathymetry is constant while the bottom parameters

undergo a step change at a given range. The fields for both of these examples were

generated using a parabolic equation approach in which the elliptic Helmholtz equation is

approximated by a parabolic equation[64-66].
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4.2 Ramp Example
The first test of the adiabatic modes was conducted using a parallel plat-- region abutting

a wedge. The environment is the same as that used by Jensen and Kuperman in their analysis

of sound propagation in a wedge shaped ocean with a penetrable bottom[66].

Receiver depth
25 m

frn

112 m /c =1500 nxs .;'..
20 ma- 0.0 db/,

Sourceloe15

R. I

= c 1704.5 s~_____________ -ia -~

, 4 5 2000 m - 7000

Fig 4.2.1 Coastal Wedge Geometry

The placement of the source and receiver is such that there are two modes excited; the first and

third mode propagate while the source is in the null of the second mode. As stated in the

previous chapter, adiabatic mode propagation is assumed; ie, mode coupling is not considered.

This assumption is plausible with the small slope and widely separated wavenumbers.

Providing a valid reference spectrum in the range dependent environment is a difficult

task for two reasons. First, since the range dependent field generation is done through an

approximation method (thle parabolic equation), the field generation program in addition to the

analysis algorithm may introduce output aberrations. Second, the range dependent nature of

the waveguide raises the question as to the definition of an appropriate reference spectrum [631.
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As outlined in section 4.1, the adiabatic approximation is used. Since the bottom velocity

profile used in this case is an isovelocity one, the Pekeris waveguide was used as a reference

for wavenumber accuracy. For each processing block, the mean depth of the range interval

was used as the depth of a Pekeris waveguide with bottom parameters identical to the wedge.

Given the source-receiver geometry, waveguide depth and the bottom parameters, the local

Pekeris waveguide may be analyzed for the "reference" wavenumbers. The Prony

wavenumbers plotted are the parameter outputs from the algorithm. The graph of figure 4.2.2

used a 250 meter aperture and a model order of five. In the initial 1500 meters, the startup

phenomenon of the PE approximation method causes the aberrations and oscillatory behavior.

Once the field generation program stabilizes, the agreement between the Prony's method and

the Pekeris reference is quite good. An interesting trait of the algorithm is the limited ability to

track modes past cutoff. These virtual modes may be modelled as highly damped

modes[19,20,67].

0.10

Mode 3 cutoff - Pekeris Mode 1

> ,- Pekeris Mode 3

0 Prony Mode l

0.09 3 Prony Mode 3

0.08

0 2000 4000 6000 8000 10000 12000
Range (m)

Fig 4.2.2 Pekeris vs PRAWNS analysis for coastal wedge
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The energy from the virtual modes is "dumped" into the penetrable bottom; the detectable

amplitude will significantly decrease for each range block until that mode can no longer be

detected.

As the specified model order varies, the residue should decrease somewhat as the larger

model order is available to account for the moving average portion of the system. Graphs of

the residues(figures 4.2.3 and 4.2.4) for several orders show this general trend. By holding

the other parameters constant (250 m aperture or averaging block with a processing block of 50

points at 5 meter spacing, no overlap) and varying the model order, the effect of the specified

number of modes becomes clear. As the amount of overspecification increases, the system

more closely matches the all pole environment. In the residue graphs for model orders 4 and 6,

the best match to an all pole system is in the region from 3000 to 5000 meters after the PE

generating algorithm has stabilized and before the upslope region. A model order of 10 or 20

yields a better match across the entire range block. The cause of large residue spikes in the

4000 m range interval of the large order models is not known.
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Fig 4.2.3 Residue graphs for ramp model orders 4 and 6
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Fig 4.2.4 Residue graphs for ramp model orders 10 and 20

The use of this type of residue is not, however, the only consideration for selecting the

"best" model order for the problem. In figures 4.2.5 and 4.2.6, the small residues associated

with the exact model order and the associated wavenumber graph are shown. While the

residues have small magnitudes over the entire range interval, the accuracy of the estimated

wavenumbers does not match the over specified model order evaluations of the same

environment. Even a graph of the total residue (fig 4.2.7), obtained by summing the individual
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range bluc:K residues does not show the drawback of using a model order equal to the exact

system order. The total residue does indicate the general "better fit" of the higher order

models.
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Fig 4.2.5 Residue vs range for ramp model order = 2
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Fig 4.2.6 PRAWNS vs. Pekeris for ramp model order = 2

-116-



0.04

S0.03-

Li0.02-

" 0.01

0.00-
2 3 4 5 6 7 8 9 10 20

Model Order

Fig 4.2.7 Total residue sum vs. model order

The ESD is particulary useful in examining the changes in the modal structure in the

range dependent waveguide. Figure 4.2.8 demonstrates this utility; it is a progressive

collection of ESD for various range blocks. The transformation of the tabular data into a

spectal presentation allows a physical interpretation of the propagating field. The initial startup

of the PE code (PAREQ) is evident as is the "steady state" condition in the parallel plate region.

The upslope transition at 5000 m causes the mode energy to move toward cutoff. After mode 3

cuts off, this peak becomes broad as energy is being dissipated(into the bottom) from the

mode. The location of the peak energy in the remaining mode moves toward lower

wavenumbers (and cutoff). The mode shape is compiessed as the channel dimensions naTow

causing the peak energy in mode 1 to increase. The ESD plot in figure 4.2.8 indicates that both

modes have cutoff by 11500 m.
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By collecting the ESD for each range block and integrating the results in a contour plot,

the shift in wavenumber and changes in energy level are sumnmarized in figure 4.2.9.
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4.3 Geoacoustic Parameter Shift Example
The second environment for an evaluation of the Prony's method in a range dependent

waveguide is a parallel plate region with a step change in bottom sound speed and density. The

values used in the bottom intervals are from Hamilton's compilation of bottom types and their

representative parameters[69. Again, the source-receiver geometry is such that there are two

modes propagating in the water column; the source is in the null of mode 2, which does not

propagate. The bottom variation was chosen to force one of the modes into cutoff.

r z P = 1.00 g/cm 3

117m 117m c = 1500m/s200 m a = 0.0 db/X

/ I = Receiver
Source

[ P = 16 
eeeelseeeee 

"Ies"Oee 
sssssss~ 

f

P c......... P2 =.60g/cm .......
P =1.65 g/cm ..... "P = 0 g c "" . 1.............

c1 =1650 m/s , , 1570 m/..... s
a =0.5 db/ Xe -I, ..... ,- a2........

1 -5000 m -7000 m

Fig 4.3.1 Bottom Parameter Shift Example

The performance of the Prony algorithm with model order changes for this waveguide was

similar to that of the ramp example of the last section. The graph of figure 4.3.2 shows the

close tracking of the PRAWNS output with the Pekeris reference. The wavenumber amplitude
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tended to die out reasonably quickly. Figure 4.3.2 also indicates the startup phenomenon of

the PE equation method used to generate the field.

"" 0.11 Bottom parameter shift - mode 3 cutoff

x --------------------------. ..

0.10 - Pekeris Mode l
Pekeris Mode 3

P- x PRAWNS Mode

0.09- PRAWNS Mode

N

, 0.08 - -T . -

0 2000 4000 6000 8000 10000 12000
Range (m)

Fig 4.3.2 Pekeris vs PRAWNS analysis for parameter step shift

In figure 4.3.2, the shift in mode 1 is obscured by the symbols used to mark the PRAWNS

output. The shift in the mode 1 wavenumber is small; the initial Pekeris wtvenumber is

.103874 m-1 while the Pekeris wavenumber after the bottom shift is .103958 m-1. The

algorithm tracks this change but even the difference plot of figure 4.3.3 does not clearly

indicate the error ( the error is the difference between the Pekeris and PRAWNS values in a

given range interval). The average error magnitude for mode I is 4.3 E-05 and for mode 3 it is

3.6 E-04.
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Fig 4.3.3 Wavenumber error vs. range for bottom shift model
(50 pt, 5 m spacing, 0 overlap, model order 20)

The use of the residue as an analytical tool in this environment is summarized in figures

4.3.4 and 4.3.5. The residue decreases for higher order model but again the larger order

models have residue spikes in the region prior to the wavenumber shift.
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Fig 4.3.4 Residue graphs for step change model orders 4 and 6
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Fig 4.3.5 Residue graphs for step change model orders 10 and 15

The total residue (the sum of the individual residues for each range block) found in

figure 4.3.6 shows the general trend of the decrease of total residue with increasing model

order. The increase in total residue from an order 15 model to an order 18 model is due to the

residue spikes in the higher order model. The 18 order model residue does, however, have a

lower value than order 10 and most earlier models.
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Fig 4.3.6 Total residues for step change case

(50 pt, 5 m spacing, 0 overlap)

The low residues in the situations where order equals two or three is misleading as

demonstrated in the residue graph of figure 4.3.7 and the corresponding wavenumber graph of

figure 4.3.8. Although the residue does, in fact, indicate the observed data fits an all pole

model, the accuracy of the parameters found by an exactly specified case is questionable.

The ESD of the process indicates there is still energy in the region of the cutoff mode as

the range interval from cutoff increases. The ESD also clearly indicates the spectral spreading

and dissipative nature of the cutoff mode.
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Fig 4.3.7 Residue vs. range for step change model order 2
(50 pt, 5 m spacing, 0 overlap)
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Fig 4.3.8 PRAWNS vs. Pekeris for step change model order 2
(50 pt, 5 m spacing, 0 overlap)
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As a last confirmation of the algorithm's performance, the contour plot of the ESD for a variety

of ranges in figure 4.3.10 shows the dissapation of mode 3 after the bottom transition at 5000

m. The concentration of energy for both modes is narrow with ari easily discernable peak.
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4.4 Summary
This chapter demonstrated the performance of Prony's method in a range dependent

environment. The examples used consisted of fields generated by a parabolic equation

algorithm (PAREQ) in waveguides which had bathymetry changes or bottom parameter shifts.

The assumption of local adiabatic propagation was made; ie each secticn was considered to

have locally invariant boundary conditions. The small apertures (250 m) proved more than

sufficient for accurate determination of waveguide parameters.

While the determination of the residue allowed a quantitative assessment of the

parameter choice, the residue is not recommended as a primary or exclusive evaluation

method. At model orders which are the exact or close to the exact system order, the residue

indicated an excellent fit to an all pole filter while the estimated parmeters were inaccurate when

compared with the reference values (Pekeris waveguide). The ESD proved a more useful tool

in this situation; the ESD also uses all estimated model parameters.
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5.1 Recommendations and Future Considerations

This study has exercised a specific algorithm designed for estimating modal

wavenumbers, amplitudes, and attenuations to identify the strengths and shortcomings of this

approach. In this section, we will briefly discuss areas which have been identified as requiring

more attention and effort. Each of these areas deserves a separate study and should be

considered for future successful employment of Prony's method. One such envisioned

application of the high resolution technique is as a tool by which measured data may be

manipulated to yield wavenumber estimates of propagating modes. These estimates can act as

input for a perturbative scheme to bottom profile determination. Effectively, this treats the

water column as a measurable medium which allows determination of the geoacoustic bottom

parameters by recognizing the modal structure of the waveguide as a sampling mechanism.

Noise performance is the major obstacle in implementing this bottom evaluation

scheme. The current algorithm's noise threshold of 30 dB SNR requires restructuring of the

approach and, possibly, the experimental setup. One experimental change which would aid in

processing the data would be the use of multiple data runs at the same site. This would permit

an ensemble of data for processing rather than the "single snapshot" data series available in the

current setup. Within the confines of the current experiment, each receiver was treated

separately. A more sophisticated approach would correlate the data received by the two

hydrophones. Care is required in associating the data from the two receivers; the different

depth placement of the "vertical array" elements equates to different source receiver geometry.

The field at each receiver will be influenced by the local sound velocity profile, source-receiver

geometry and frequency. There are steps which should be investigated which may improve

performance of the algorithm without changes in the experimental setup. These efforts may be

broadly divided into pre-PRAWNS data processing and changes in the PRAWNS algorithm

itself.
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One pre-PRAWNS processing approach which has met with limited success is a kr

domain bandpass filter. In this scenario, the data is numerically Hankel transformed, bandpass

filtered about user specified wavenumbers and inverse Hankel transformed back to a new

pressure field. The ensuing pressure field is used as input to the Prony algorithm above. The

bandpass filter used in the study was wider than the wavenumber section of interest since a

specific window was not applied to the data.

To examine the effects of such filtering, we consider the Nantucket profile, with a

SAFARI generated pressure field again. Without the bandpass filtering, the modal structure is

as shown in the ESD plots of figure 5.1.1. If the same pressure field is first notched filtered in

the kr domain and all PRAWNS inputs kept the same as the earlier plots, the ESD plot of figure

5.1.2 is obtained. Notice the "outlier" peaks of energy at the bandpass wavenumbers. While

these outliers are distracting, they are due to the particular filter implimentation used. The

wavenumbers of the three propagating modes is the same in each case. A better filtering

scheme would use a finite impulse response (FIR) or smoothing filter on the pressure data[51].

.0 40

'~20

" -zo -

za --4 0 .

C2 800 480 19-0j l 040

Horizontal Wavenumber(m -1 )

Fig 5.1.1 PRAWNS ESD for unfiltered 220 H1z Nantucket pressure field
(SAFARI field, 100 pt, 50 pt overlap, 0.64 m spacing, model order 15)
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Fig 5.1.2 PRAWNS ESD for bandpass filtered 220 Hz Nantucket pressure
field

(SAFARI field,100 pt, 50 pt overlap, 0.64 m spacing, model order 15)
(Passband from 0.7 to 1.0 m- 1)

The merits of this crude filtering are evident when the technique is used on real data.

Consider the ESD of the Nantucket field experiment of chapter 3 (figures 3.4.8 through

3.4.11). The low SNR (the Green's function of figure 3.4.6 has modal peaks roughly 6 dB

above background) resulted in only one PRAWNS mode identification in each case. Figures

5.1.3 through 5.1.6 illustrate the effects of bandpass filtering on the pressure fields of actual

data. The ESDs of these figures were generated using the same PRAWNS inputs as the non

filtered versions of chapter 3. The outlier peaks are present; the 140 Hz field had a passband

of 0.4 zo 0.8 m-1 while the 220 Hz field passband was 0.7 to 1.0 m-1. Notice the additional

mode(s) found in the ESD. Wavenumber plots of the modes identified show reasonable

agreement between both hydrophones and , apparently, a correlation with the bathymetry

(figures 5.1.7 through 5.1.9). Table 5.1.1 lists the wavenumbers of the peak values of the

Green's function over the entire aperture. The wavenumbers are shown as "reference"

wavenumbers in figures 5.1.7 and 5.1.8; actually, the numerical Hankel transform used has

problems. The difficulty is that the Hankel transform assumes boundary condition invariance

over the interval of interest. Changes in bathymetry or bottom properties will change the

parameter estimates; however, as boundary conditions become complex, the shift in parameter

estimates for a given boundary condition variation becomes less predictable. The PRAWNs

approach also makes the adiabatic approximation; the smaller aperture of this method makcs
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the validity of the assumption more likely. Future improvements in this approach include a

more sophisticated filtering scheme to improve mode resolution and to eliminate the bandpass

wavenumber "outlier" spikes.

Changing the algorithm used may also improve performance in noise. A prime

candidate for enhancing the current method is the SVD based approach espoused by Tufts and

Kumaresan[44,45]. The method adjusts the matrix used to determine filter coefficients by

evaluating the matrix for breakpoints in the singular values. This may require the assumption

of no damping (ie, real eigenvalues) and then solving for damping by other means such as the

consecutive block scheme of chapter 2.

The alogrithm may be altered to use a modified Prony's method with an autocorrelation

or autocovariance matrix used in place of the signal matrix. Use of these matrices have not yet

been explored in depth for this application and may prove more robust in noise than the present

approach. Another method used by researchers seeking a stable filter with robust noise

performance is the forward backward linear predictor (FBLP)[3 1]. The FBLP assumes real

eigenvalues to satisfy the stationary attributes of the signal; the signal should look the same in

the forward or backward directions. This can not strictly be satisfied by a decaying

exponential. If no attenuation is assumed to occur, this method might be used to identify the

wavenumbers and initial phase for the propagating modes. This information could then be

used in the current algorithm to reduce the order of the problem by, in effect, factoring the

known information from the polynomial to be rooted[31]. Similarly, the incorporation of the

PRAWNS algorithm into a perturbative or iterative scheme to correct parameter estimates may

provide a more robust method. Throughout the exploration of alternate methods, maintaining

the short apertures of the approach studied here must be emphasized. The advantage of a high

resolution scheme and parameter model is that it allows a priori knowledge of the acoustic

propagation to be used to shape the model. This allows short data sets to be used which are
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BODIS 1 BODIS 2

140 lIz Mode 1 0.5637019 0.5670657

Mode 2 0.4955879 0.4935128

220Hz Model 0.9207131 0.9182185

Mode 2 0.8502503 0.8494114

Table 5.1.1 Reference wavenumber values for Nantucket data
(From peak values of Green's function over entire data set)

essential in the range dependent waveguides found in field experiments. Large apertures may

improve performance in noise but the cost of using additional data must not be taken lightly.

While the incorporation of a noise reduction scheme is necessary, there are other arcas

which should be addressed in future work. The incorporation of an analytic method to

determine model order would greatly ease the work of an experimenter. An SVD scheme
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similar to that of Braun and Ram warrants investigation. One particular feature of the

PRAWNS code which was not exploited was the theoretical ability to detect a reflected wave.

This was beyond the scope of this initial study. Once a reliable means of generating such data

is identified, the results should provide more information on new algorithms to test.

Additionally, the near field environment was not addressed in this study.
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5.2 Conclusions
The Prony model has been shown to fit the far field modal structure of a shallow water

waveguide quite well. The implementation of this parameter estimation aproach has several

important implications.

With this technique, the experimenter has a fast, efficient tool to use to examine the

modal structure of a waveguide. The parameter estimates may be manipulated and transformed

to provide energy information as well as tabular values. The four tools presented in this study

to assist the researcher include the energy spectral density (ESD), wavenumber, residue and

pole plots. The advantage of each was outlined in chapter 3. The ESD essentially provides an

overall summary of propagating and virtual modes. The wavenumber and residue plots are

used in an iterative scheme to obtain a good model order. Pole plots are used to identify

propagating modes among the arbitrary modes.

A parameter estimation model directly generates desired properties of the sound energy

field. Other methods, such as a pertubative inverse solution to the bottom profile make use of

these wavenumber estimates as inputs. Prony's method may replace less accurate methods,

which were required in the past, such as peak searching routines with short aperture Hankel

transforms, to find these values. Additionally, properties such as the attenuation are directly

accessible as a result of the use of the Prony fit.

The use of a high resolution approach permits use of a short range aperature which

allows exploration of range dependent features. Chapter 4 presented examples of shifts in

bathymetry and bottom properties. The ability to track range dependent waveguide aspects is

available through the adiabatic propagation assumption; the waveguide boundary conditions

are assumed to be invariant over the local (processing block) range of interest.

A major shortcoming of the current algorithm is its sensitivity to noise. For SNR

below 30 dB, estimation of model parameters tended to be both biased and to have a large
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variance; ie the estimates were inaccurate. Further exploration is necessary to formulate a more

robust algorithm for use in a field environment.

The search for analysis techniques for studying the ocean environment is continuing to

generate new approaches to old problems. While the approach first postulated by Gaspard

Riche in 1795 hardly ranks as a new concept, this application has the effect of a fresh look at

the shallow water environment. Continued development and improvement of such high

resolution techniques should provide the researcher with a formidable tool indeed.
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Appendix A. Essentials of Sturm Liouville
Problems

Sturm Liouville Problem

If a given, second order, differential equation may be cast in the form:
d-m(x) -- ] + [q(x) + O3r(x)]y =0 (A.1)

with:

* m,q,r real and continuous over the interval[a,b]

P = separation constant

* r = weighting coefficient

* homogeneous boundary conditions at x=a,b of
d( + By(a) = 0

C-" dy ) + Dy(b) = 0

then the problem is known as a Sturm Liouville problem[ 15]. The solution to the boundary

value problem has eigenvalues which are real and non-negative. In addition the

eigenfunctions associated with the eigenvalues form an orthonormal set which is complete.

The implications of this characteristic include:

" the eigenfunctions, O(x), are unique to within a multiplicative constant
b

• the eigenfunctions are orthonormal, ie. Jr(x)4n(X)4k(x)dx = Snk
a

" any arbitrary function of x can be expressed as a weighted sum of eigenfunctions,

ie. f(x) =XCn n(x) where cn = a coefficient of f with respect to the orthonormal set { }.
n

An inhomogeneous Sturm Liouville problem has the form (where A = P):
d n-X ] + qy + Ary = f(x) (A.2)

with the homogeneous boundary conditions above satisfied.
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It has the solution:

X (A.3)
A-On~

n

in which:

On are the eigenfunctions which satisfy the homogeneous equation (A. 1)

with eigenvalues On.

• An are found by using EL)= anOn(x) and exploiting the orthogonality

property of On.

. A is arbitrary and not influenced by boundary conditions.

For the case of an inhomogeneous Sturm Liouville problem where f(x) = S(x-xo), the

solution to the inhomogeneous equation is known as the Green's function and denoted

G(x,xo). This G(x,xo) may be expanded in terms of eigenfunctions of the homogeneous

equation. A last note before moving from this extremely cursory treatment of the subject

area is that the Green's function may be shown to be symmetric so that G(x,xo) = G(xo,x).

The consequence of this symmetry is evident in the solution to the pressure field in the

waveguide in which source and receiver may be interchanged with no change in the field

distribution; this trait is commonly referred to as acoustic reciprocity.
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Appendix B - Some Signal Processing Basics

As is often the case in signal processing problems, the algorithms described in this

paper use discrete samples. There are distinctions in the discrete sample environment from

the continuous time(or spatial) case. In many cases, direct analogies may be made[5 1].

Linear Constant Coefficient Difference Equations (LCCDE)

Given a differential equation with linear constant coefficients of the form:

ak dj- I' bs d-!Y- (13.1)
ak d drs

k s

to specify an output, y(r), homogeneous and particular solutions to the differential equation

must be determined. Particular solutions are dependent on initial conditions (n conditions

are required for an nth order system). If the system is causal (or non anticipatory) and

linear, the inital conditions are equal to zero.

The discrete time (or, in this case, discrete space) analogy to the differential

equations are difference equations. The difference equation used to describe the system is:
P M
7_ ak y[n-k] = Y bs x[n-s] (B.2)
k=O s=O

As in the case of the continuous time case, the difference equation system solution, y[n], is
P

the sum of a homogeneous ( 7 ak y[n-k] = 0) and particular solution. The description of a
k=O

discrete system by a LCCDE results in a rational system function. The homogeneous

solution of the difference equation has the form:
P

yh[n] = I Ak (13.3)
k--O

Signal processing literature and texts make reference to linear time invariant (LTI) systems.

A more accurate description is linear shift invariant (LSI) systems since the data may

represent a spatial sampling. A shift invariant system has the following property: if an

input xln] yields an output yfnl then x[n - no] will result in an output y~n - not. For a 1,SI
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system, causality is met by the necessary and sufficient condition h[n] = 0 for n < 0.

Physical systems are usually modelled as causal since the system output doesn't depend on

the future value of the input (or, equivalently, the system is non anticipatory). The

assumption of LSI is common; if the system is not, in fact, LSI, a given segment of the

data is assumed LSI and the parameters are calculated for each section.

Z Transforms

The bilateral z transform is defined as:
00

X(z) = I x[n] z-n  (B.4)

Input Filter Output

x[n] h[n] y~n]

X(z) H(z) Y(z)

Fig B.1 Discrete Filter Model

The z transform of a discrete series is an analytic function inside the region of convergence.
Y(z)

The z transform of an LCCDE leads to a system function (H(z) = X(z))which is rational.

The zeroes of the denominator of H(z) are singularities known as poles. The zeroes of the

numerator are known as zeroes of the system. If the poles of the sytem function are plotted

on the complex z plane, the following rules may be applied:

- in order for a system to be stable, the region of convergence (ROC) must contain

the unit circle
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- ROC for a right sided sequence is the area outside a circle with a radius of the

outermost pole's magnitude

- for a causal and stable system described by LCCDE, the poles must lie within the

unit circle

- the discrete Fourier transform (DFT) is equivalent to evaluating the z transform at

equally spaced points on the unit circle.

All Pole Filters

Using the LCCDE description of a system, the system function is found by taking

the z transform of both sides:
M
lbs z-s

H(z) = (B.5)

+ iak zk

This H(z) is a general pole-zero or autoregressive moving average (ARMA) model

If all of the numerator coefficients except bo are zero, the system function is:

H() = bo (B.6)

+ ak z~k
k= I

This defines an all pole (also known as an AR or IIR) filter.

Equivalently,

H(z) =b (B.7)

(1- Zk z-k)
k I

This may be represented by a partial fraction expansion as:
P

H Ez gk (B. 8)
1( I - Zk z -k )

k=1
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Appendix C - Prawns Program Listing
The listing below is the PRAWNS algortihm used in this thesis. Many of the routines

are based on those found in Chapter 11 of Marple[31]. Although many of the variable names

and comments are the same as Marple's, the PRAWNS program differs markedly. The

libraries used include IMSL[57] and PORT[70].

PROGRAM PRAWNS
C
C ****** ********************************************************

C
C PRony Analysis of Waveguide for Nominal Spectrum
C
C This program acts as a driver program for PRONY's method.
C INPUTS-
C FILENAM - Name of file containing data for evaluation.
C IORD - Order of model,output will have IORD variables.
C TRANG - Sampling range in meters
C NPROC - Number of data points analyzed in one pass
C NTOT - Total number of data points analyzed
C NBLOCK - Number of points in block to be averaged
C NOVER - Overlap of data samples
C
C OUTPUTS-
C AMP - Array containing averaged amplitude estimation
C PHASE - Array containing averaged phase estimation
C FREQ - Array containing averaged wavenumber estimate
C DAMP - Array containing averaged estimate of damping
CC *******************************************************************

C * VERSION 1.0 WRITI'EN BY F.J. DIEMER 8 MAR 87 *
C
C

PARAMETER(NXDATA=6000) !MAX # OF DATA POINTS READ IN
PARAMETER(MAXPROC=500) !MAX # OF POINTS PROCESSED
PARAMETER(MAXMODE = 50) !MAX NUMBER OF MODES
PARAMETER(MAXBLOC =500) !MAX NUMBER OF PTS IN BLOCK
COMMON/BIGUN/FRDAAM,PH
COMMON/AUTOFI REALPMAGRANGESSTARTSSTOPJPROCJAVG,
1 JORDJOVER
REAL*8 FREQ(MAXMODE),DAMPMAXMODE),PHASE(MAXMODE)
REAL*8 AMP(MAXMODE)
REAL PREAL(NXDATA),PIMAG(NXDATA),RANGE(NXDATA),R(NXDATA)
REAL SSTART(l0O),SSTOP(L00)
REAL*8 FR(MAXMODE,MAXBLOC),DA(MAXMODE,MAXBLOC)
REAL*8 AM(MAXMODE,MAXBLOC),PH(MAXMODE,MAXBLOC)
INTEGER JPROC(100),JAVG(100),JORD(100),JOVER(100)
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COMPLEX X(NXDATA),Y(NXDATA)
COMPLEX* 16 H(MAXMODE),Z(MAXMODE)
LOGICAL*4 FIRST,AUTO,NEWBLOCK,FINISH,INFILE, RUNONE
CHARACTER*60 FILENAM,BACK,REPEAT,JUNK,BASFIL

C
C *********************************

C INTITIALIZATION BLOCK-READ IN DATA AND MULTIPLY BY SQRT
C **********************************

C
AUTO = .FALSE.
INFILE = .FALSE.
RUNONE = .TRUE.
BACK = 'JUNK
NUNIT=6
FIRST =.TRUE.

C
WRITE(*,*) 'Input name of data file to be processed:'
WRITE(*,*) '(Be sure to include any extensions such as .DAT)'
READ(*, 1000)FILENAM

C Check to see if input is via an input file
IF( FILENAM .EQ. '* *')THIEN

INFILE = .TRUE.
NUNIT =8
READ(*,'(A)')BACK
OPEN(17,FILE =BACK,STATUS = 'OLD')
READ(17,'(A)')FILENAM
NLOC5 = INDEX(FILENAM,'.')

BASFIL = FILENAM(l:NLOC5-l)
ENDLF

C
UPEN-(.3,FILE=FILENAM,STATUS='OLD')

C
C Do loop justs skips header and near field data
C

DO 10OIZ = 1,6
10 READ(3, 1000)JUNK
C

READ(3,*,END=20)(RANGE(I),PREAL(I),PIMAG(I),h1 ,NXDATA)
20 ICOUNT=I- I
30 DO4OJT=l,I-1

PREAL(JT=PREAL(JT)*SQRT(RANGE(JT))
40 PIMAG(JT)=PIMAG(JT)*SQRT(RANGE(JT))

TRANG=RANGE(2)-RANGE( 1)
C

IF(INFILE .EQ. .FALSE.)THEN
C
C Reads from keyboard vice input file
C
50 WRITE(*,*)''

W~RITE(*,*)'Data are available within the following range:'
WRITE(*, 1005)RANGE( I),RANGE(ICOUNT),TRANG
WRITE(*,*)"
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WR1TE(*,*)' Input INTrEGER value of START range(in meters):'
CALL READIN(FIRST,MSTART)
RSTART=FLOAT(MSTART)

C

WRITE(*,*)' Input INTIEGER value of STOP range(in meters):'
CALL READIN(FIRST,MSTOP)
RSTOP=FLOAT(MSTOP)

C
C Determine correct starting and stopping ranges and no of points
C

RS=((RSTART-RANGE(l1))/TRANG)+ 1
IB EGIN=IFIX(RS)
IF(RS-FLOAT(IBEGIN) .NE. 0.0) IBEGIN=IBEGIN+1
ISTOP=IFIX((RSTOP-RANGE(1 ))/TRANG)+1
NTOT=(ISTOP-IBEGIN)+ 1
IY= 1

C
DO 60 IT = IBEGINISTOP
R(IY)=RANGE(JT
Y(rY)=CMPLX(PREAL(JT),PIMAG(JT))

60 IY=IY+l
C

ICOUNT=NTOT
WRITE(*,*)''

C
70 WRIJTE(*, 10l0)NTOT
C
C *******************************

C MANUAL AND HiIIAL PARAMETER SET BLOCK
C *****************************k**

C
WRITE(*,*)' Enter file name for output file or'
WRITE(*,*)' hit RETURN to output to screen.'
READ(* ,'(A)')JUNK
IF(JUNK .EQ.' '')THEN
NUNIT =6

ELSE
NUNIT = 8
OPEN(NUNIT,FILE = JUNK, STATUS = 'NEW')

ENDIF
C

WRITE(*,*)ylnput number of points in each processing block:'
NTRIAL-=MIN(MAXPROC,NTOT)
WRITE(*, I 040)NTRIAL
CALL READIN(FIRST,NPROC)

C
C If user requests more than MAXPROC points or more than NTOT
C default value of NPROC = 20 is assigned.
C

IF(NPROC .GT. AMINO(MAXPROC,NTOT))NPROC=AMINO(20,NTOT)
IF(ICOUNT/2 .EQ. 0) NPROC =NTEMP
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C
WRITE(*,*)' Input number of points overlap between blocks:'
WRITE(*, 1050)NPROC-1
JTEMP=NOVER
CALL READIN(FIRST,NOVER)
IF(NOVER .GT. (NPROC- 1)) NOVER = NPROC/2
IF((JTEMP .EQ. 0) .AND. (NOVER .EQ. 0) .AND. (.NOT. FIRST))

1 NOVER = 0
IF((JTEMP .NE. 0) .AND. (NOVER .EQ. 0) .AND. (.NOT. FIRST))

1 NOVER = JTEMP
IMAX=MINO(50,NPROC/2)

C
WRITE(*,*)' What order system do you want to model:'
WRITE(*, 1040)IMAX
CALL READIN(FIRSTIORD)
IF(IORD .LE. NPROC/2) GOTO 80
WRITE(*,*)' Desired order is too high for processing block'
GO TO 70

C
80 WRITE(*,*)"

WRITE(*,*)' Input number of points in averaging block:'
WRITE(*,1070)NPROC,NTOT
CALL READIN(FIRST,NBLOCK)
IF(NBLOCK .LT. NPROC) NBLOCK = NPROC !Min size of block=NPROC
IF(NBLOCK .GT. ntot)NBLOCK=NTOT
GOTO 110

C
ELSE ! Alternate to sequence started near label 40

C
C Reads input selections from the input file
C

READ(17,*)NENTRY
DO 610 JS = 1,NENTRY

610 READ(17,*)NUMZ,S START(JS),SSTOP(JS),JPROC(JS),JOVER(JS),
I JORD(JS),JAVG(JS)

NAUTO = 1
CALL

INAUTO(R,Y,NPROC,NOVER,NBLOCK,IORD,BASFIL,NAUTO,TRANG,NTOTI)
ENDIF

C
C Initial settings for XSET
C
110 IBLOCK = NBLOCK

NEWBLOCK = .TRUE.
IEND = 0

120 ISTART =1
M=I
TRES = 0.

C
C ********************************,*******************************

C CALCULATION AND LOOP BLOCK
C ***************************************************************
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C READ IN CURRENT BLOCK OF DATA
C
130 CALL
XSET(Y,ISTART,IEND,IBLOCK,NTOT,NPROC,NBLOCK,NOVER,NEWBLOCK,

1 FINISH,X)
IF(NEWBLOCK) THEN

ILAST=IEND
IFIRST=IEND+ 1-NB LOCK

ENDIF
C
140 CALL PRONY(NPROC,IORD,X,H,Z,RES ,ISTAT)

IF(ISTAT .EQ. 0) GOTO 150
WRITE(*,*) 'PROGRAM HALTED - ERROR NO. ',ISTAT
GOTO 200

C
C
C The call to EXPARAMS will transform H and Z arrays to final
C output form ( Z-->DAMP,FREQ and H--> AMP,PHASE)
C
C
150 CALL EXPARAMSUIORD,TfRANG,H,Z,AMP,DAMP,FREQ,PHASE)
C
C
C

CALL SORT(FREQ,AMPDAMPPHASEJIORD,0)
C

DO 160 NA =1,IORD
AM(NA,M) =AMP(NA)

DA(NA,M) =DAMP(NA)

FR(NA,M) =FREQ(NA)

160 PH(NA,M) = PHASE(NA)
C

TRES=TRES +-RES
M=M+1
IF(.NOT. NEWBLOCK) GOTO 130
M=M-1
TRES=TRESIM
CALL WHEAD(NUNIT,FILENAM,NTOT,NBLOCK,NPROC,IORD,NOVER,TRANG,
I R(IFIRST),R(ILAST),AUTO,BACK,IMIN,
1 IMAX,TRES)
CALL THREAD(FREQ,AMPDAMP,PHASE,M,IORD)
CALL SORT(FREQ,AMP,DAMP,PHAS EORD, 1)
CALL WDATA(NUNIT,JVARY,FREQ,AMP,DAMP,PHASE,IORD,AUTO)

C
M= I
FIRST=.FALSE.
IF(.NOT. FINISH)GOTO 130 !CHECK TO SEE IF AT END OF RANGE
WRITE(NUNIT, 1060)
WRITE(NUNIT, 1060)
IF(INFILE .EQ. .TRUE. .AND. NAUTO .NE. NENTRY)THEN

NAUTO = NAUTO +1
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CALL
INAUTO(R,Y,NPROC,NOVER,NBLOCK,IORD,BASFIL,NAUTO,TRANG,NTOT)

GOTO 110
ELSE IF(INFILE .EQ..FALSE.)THEN

C
WRITE(*,*)'Do you want a repeat run of same file with change in'

WRITE(*,*)'order or method (Y or N)?'
READ(*, 1000)REPEAT
IF(REPEAT .EQ. 'Y' .OR. REPEAT .EQ. 'y') GOTO 50

C
ENDIF

C
200 WRITE(*,*)'Done'
C
1000 FORMAT(A)
1005 FORMAT(1X,'Closest point: ',9.2,' m.',3x,'Farthest point: ',F9.2,

1 'm'/lx,'Sampling interval: ',f7.4,' m.')
1010 FORMAT(IX,' There are ',i5,' samples in the range interval')
1040 FORMAT(IX,' (MAX value= ',i5,')')
1050 FORMAT(1X,'(Min overlap = 0, Max overlap =',i3,')')
1060 FORMAT(lX,

1070 FOR MAT(3X,'(For no averaging between blocks, enter ',i5/t4,
1 'For averaging over complete range, enter ',i51t4,
1 'Intermediate values will set up blocks of your entry and'/3x,
1 'average within the block.)')

1080 FORMAT(1X,'Completed analysis with ',a6,' = ',i5)
C

END
C
C
..............................................................

C

SUBROUTINE INAUTO(R,Y,JA,JB,JC,JD,FILENAM,NAUTO,TRANG,NTOT)
C

C INAUTO assigns the next set of inputs from the input file to
C the variable names used by PRONY. In addition , the range block
C interest is read into the R and Y arrays and an output file is
C opened under NUNIT = 8.
C * * ** ** ** * *k************

C
PARAMETER(NXDATA=6000)
COMMON/AUTOFIL/PREAL,PIMAG,RANGE,SSTART,SSTOP,JPROC,JAVG,
1 JORDJOVER
REAL PREAL(NXDATA),PIMAG(NXDATA),RANGE(NXD ATA) ,SSTART( I 00)
REAL S STOP(100),R(NX DATA)
COMPLEX Y(NXDATA)
INTEGER JAVG( 100),JORD(100),JPROC(100),JOVER(100)
CHARACTER*80 FILENAM,SCRATCI IA,SCRATCHIB

C
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RSTART =SSTART(NAUTO)
RSTOP = SSTOP(NAUTO)
JA = JPROC(NAUTO)
JB = JOVER(NAUTO)
JC = JAVG(NAUTO)
JD = JORD(NAUTO)

C
WRITE(SCRATCHB,'(13)')NAUTO

10 NLOC2 = INDEX(SCRATCHB,'')
IF(NLOC2 .EQ. I)THEN
SCRATCHB=SCRATCHB(2:79)
GOTO 10
END IF

20 NLOC1 = INDEX(FILENAM,"')
SCRATCHA = FILENAM(1 :NLOC1-1)//SCRATCHB(1 :NLOC2- 1)/f.PRA'
OPEN(8,FILE=SCRATCHA,STATUS = 'NEW-)

C
RS=((RSTART-RANGE( 1))JrRANG)+1
IBEGIN=LFLX(RS)
IF(RS-FLOAT(IBEGIN) .NE. 0.0) IBEGIN=IBEGIN+l
ISTOP=IFIX((RSTOP-RANGE( 1))iTRANG)+I
NTOT=(ISTOP-IBEGIN)+l
Iy=1

DO 60 JT = IBEGLN,ISTOP
R(IY)=RANGE(JT
Y(IY)=CMPLX(PREAL(JT,PIMAG(JT))

60 lY=IY+l
c

RETURN
END

C

SUBROUTINE SORT(FREQ,AMP,DAMP,PHASE,IORD,I VAR)
C
C
C Performs bubble sort of AMPLITUDE data with largest value index 1.
C Performs bubble sort of Damping data with ivar--l
C
C

PARAMETER(MAX MODE = 50) !MAX NUMBER OF MODES
REAL*8 FREQ(MAXMODE),DAMP(MAXMODE),AMP(MAXMODE)
REAL*8 PHASE(MAXMODE),TEMP

C
IF(I VAR .NE. 1) THEN
DO 20 J = IORD, ],-I

DO 10 1 = lj
IF(AMP(I) .LT. AMP(1+l)) T'HEN
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TEMP = AMP(I+1)
AMP(I+ 1)=AMP(I)
AMP(D)=TEMP
TEMP = DAMP(1+1)
DAMP (1+1 )=DAMP(I)
DAMP(I)=TEMP
TEMP = PHASE(I+1)
PHASE(I+ 1)=PHASE(D)
PHAS E(I)=TEMP
TEMP = FREQ(I+ 1)
FREQ(I+1)=FREQ(I)
FREQ(I)=TEMP

ENDIF
10 CONTINUE
20 CONTINUE
C

ELSE
C

DO 40K = IORD,1I,- I
DO 30M = 1,K

IF(ABS(DAMP(M)) .GT. ABS(DAMP(M+1))) THEN
TEMP = AMP(M+l)
AMP(M-i1)=AMP(M)
AMP(M)=TEMP
TEMP =DAMP(M+1)
DAMP(M+ 1)=DAMP(M)
DAMP(M)=TEMP
TEMP = PHASE(M+1)
PHASE(M+1 )=PHASE(M)
PHASE(M)=TEMP
TEMP = FREQ(M+1)
FREQ(M+ I)=FREQ(M)
FREQ(M)=TEMP

ENDIF
30 CONTINUE
40 CONTINUE
C

ENDIF
C

RETURN
END

C
C
...........................................++- 4+..................

C

SUBROUTINE WHE-AD(NU,FI,NT,NB,NP, IP,NO,TR, RSTART, RS TOP, AUTO,
I BACK, IMIN,IMAX,RES)

C
C
C W[IEfAI) writess header information into file denoted by NU
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C
CHARACTER*60 FI,BACK
LOGICAL AUTO

C
WRITE(NU,1050)
WRITE(NU, 1000)FI,NT,NB,NP,IP,NO,TR

WRLTE(NU, 10 10)RSTART,RSTOP
WRITE(NU,1040)RES

C
IF(AUTO)THEN

WRITE(NU, 1020)B ACK,IMINIMAX,BACK
ELSE

WRITE(NU,1030)'INDEX ','WAVENUMBER',' DAMPING ','AMPLITUDE',
1 'PHASE(RAD)-
ENDIF

C
1000 FORMAT(1X,'Prony Analysis of: ',a60//t IO,Trotal No. of points:',

1 15,13x,'Avg. block:',i3,' pts.'ftlO,'Processing block: ',

1 i3,17x,'Model Order: ',i2/tlO,'Overlap: ',i3,' pts.',21x,
1 'Samp. Range: ',f7.4,'mi.')

1010 FORMAT(1X,TIO,'Starting Range: ',f 10.4' m.',8x,'Final Range:'%
1 flO.4,'mi.')

1020 FORMAT(IX,A6,' varied from ', 13,' to ',l3/T2,A6,5x,
1 'Wavenumber',5x,'Amplitude')

1030 FORMAT( 1X,A5,3X,A 10,6X,A7 ,7X,A9,6X,A 10)
1040 FORMAT(9X,'Residue of model for this range interval:',

1 F8.5//)
1050 FORMAT(1 X,

1

C
RETURN
END

C
C

C

SUBROUTINE WDATA(NUNIT,JV,FREQ,AMP,DAMP,PHASE,IORD,AUTO)
C
C ********************************

C WDATA writes appropriate data to file specified by NUNIT
C ********************************

C
PARAMETER(MAX MODE =50) !MAX NUMBER OF MODES
REAL*8 FREQ(MAXMODE),DAMP(MAXMODE),AMP(MAXMODE)
REAL*8 PHASE(MAXMODIE-)
LOGICAL AUTO

C
IF(AUTO) THEN
DO 10J=l,IORI)
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10 WRITE(NUNIT,1000)JV,FREQ(J),AMP(J)
ELSE

DO 20 M=I,IORD
20 WRITE(NUNIT,1020)M,FREQ(M),DAMP(M),AMP(M),PHASE(M)

ENDIF
C
1000 FORMAT(1X,13,5X,2(FIO.6,2X))
1020 FORMAT(1X,12,4(5X,F1O.7))
C

RETURN
END

C
C
...............................................................

C
...............................................................

SUBROUTINE
XSET(Y,ISTART,IEND,IBLOCK,IFINAL,NPROC,NBLOCK,NOVER,

1 NEWBLOCK,FINISH,X)
C
C ************************************************************
C Xset is a routine to output the correct X array for PRONY
C analysis. The routine uses values from Y and takes into account
C the processing block,averaging block and total range covered.
C Variables beginning with "N" indicate number of points while
C variables beginning with "I" indicate index pointer.
C
C

PARAMETER (NXMAX = 100)
PARAMETER (NYMAX = 600)
COMPLEX X(NXMAX),Y(NYMAX)
LOGICAL NEWBLOCKFINISH

C
FINISH =.FALSE.

C
IF(IEND.EQ. IFINAL) THEN

FINISH = .TRUE.
NEWLOCK =.TRUE.
RETURN

ENDIF
C

IF (.NOT. NEWBLOCK) THEN
C

IF((IEND + NPROC - NOVER),iT. IBLOCK) THEN
ISTART = END +1-NO VER
END =ISTART + NPROC -

ELSE
IEND = I3LOCK
ISTART = .END +I - NPROC
NEWBLOCK = .TRU. +
IBLOCK = IBLOCK + NBLOCK
IF(IBLOCK .GT. IFINAL) IBLOCK = IFINAL
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ENDIF
C

ELSE ! Start a new block of data
ISTART= IBLOCK - (NBLOCK- 1)

lEND = ISTART + NPROC -1
NEWBLOCK = .FALSE.

ENDIF
C

J=l
DO 101 = ISTARTIEND

X(J)=Y(I)
10 J=J+l
C

RETURN
END

C
C
...............................................................

C
...............................................................

SUBROUTINE READIN(FIRSTNVAR)
C
C *************************** ****

C READIN is a routine to read data from terminal with option
C of maintaining current integer value as default value if RTN
C is user response to inquiry after first pass. The routine
C is set up for integer values but may be adjusted for real
C variables with additional index and internal read statements.
C ********** ******************************

C
CHARACTER*80 STRING,CLOC,NFOR
LOGICAL FIRST
IF(.NOT. FIRST)WRITE(*, 1010)NVAR

C
10 READ(*,'(A)')STRING

NLOC = INDEX(STRING,')
IF (NLOC .NE. I)THEN

NLOC = NLOC - 1
WRITE(CLOC,'(I1)')NLOC !Assumes less than 10 digits
NFOR = '(I'//CLOC(1:1)/f)'

READ(STRING,NFOR)NVAR
ENDIF

C
1010 FORMAT(IX,' [Current value: ',15,']')

RETURN
END

C
C
...............................................................

C
++++++++++++++++++++++++++++++++++++++++I++++++ +++++++++++++++ +-

SUBROUTINE THREAD(FREQ,AMP,DAMP,PHASE,MRUNS,IORD)
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C********************************
C THREAD is an attempt at a more sophisticated averaging scheme
C rather than blindly adding terms. It averages like components
C in adjacent bincks, by checking list for closest matches.
C
C

PARAMETER(MAXMODE =50) !MAX NUMBER OF MODES
PARAMETER(MAXBLOC =500) !MAX NUMBER OF PT IN BLOCKS
COMMON/BIGUN/FR,DA,AM,PH
REAL*8 FR(MAXMODE,MAXBLOC),DA(MAXMODEIMAXBLOC)
REAL*8 AMAMODEMAXBLOC)PHMAXMODE,MAXBLOC)
REL* DAMP(MAXMODE),AM(MAXMODE),PHASE(MAXMODE)
REAL*8 FREQ(MAXMODE),TEMP(MAXMODE,MAXMODE)
REAL*8 BDAMP(MAXMODE),BAMPMAXMODE),BPHASE(MAXMODE)
REAL*8 BFREQ(MAXMODE)

C
DO 1OIR = IORD

AMP(LR) = AM(IR, 1)/DFLOAT(MRUNS)
FREQ(IR) = FR(IR,1)/DFLOAT(MRUNS)
PHASE(IR)= PH(IR, 1)/DFLOA T(MRUNS)

10 DAMP(IR) = DA(IR,l)IDFLOAT(MRUNS)
C

DO 80 M = 1, MRUNS-1I
C

DO 201I= IORD
DO 30 J= 1,IORD

30 TEMP(J,D) = ABS(FR(JM+1) - FR(I,M))
20 CONTINUE
C

DO 60 M2= IJORD
C

DO 40 IA = lIORD
DO 50 JA=l,IORD

IF( 1A .EQ. 1 .AND. JA .EQ. 1) THEN
TLOW = TEMP(IA,JA)
LROW = I
LCOL = 1

ELSE
IF(TEMP(IA,JA) .LT. TLOW) THEN
TLOW = TEMP(IA,JA)
LROW =IA
LCOL = JA

ENDIF
ENDIF

50 CONTINUE
40 CONTINUE
C

NBIG = 1000
DO 100 I=1,IORD

100 TEMP(LROW,1) =NBIG

C
DO 120 J= 1,IORD
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120 TEMP(JLCOL) = NBIG
C

AMP(LCOL) = AMP(LCOL) + (AM(LROW,M+l)/DFLOAT(MRUNS))
BAMP(LROW) =AMP(LCOL)
FREQ(LCOL) = FREQ(LCOL) + (FR(LROW,M+1)/DFLOAT(MRUNS))
BFREQ(LROW) = FREQ(LCOL)
PHASE(LCOL) = PHASE(LCOL) + (PH(LROW,M+I)/DFLOAT(MRUNS))
BPHASE(LROW) = PHASE(LCOL)
DAMP(LCOL) = DAMP(LCOL) + (DA(LROW,M+I)/DFLOAT(MRUNS))
BDAMP(LROW) = DAMP(LCOL)

60 CONTINUE
C

DO 70 M3 = 1,IORD
DAMP(M3) = BDAMP(M3)
FREQ(M3) = BFREQ(M3)
PHASE(M3)= BPHASE(M3)

70 AMP(M3)=BAMP(M3)
C
80 CONTINUE
C

RETURN
END
SUBROUTINE PRONY (N,IP,X,H,Z,ERR,ISTAT)

C
C Solves for the exponential model parameters by the Prony
C method
C Input parameters:
C
C
C N -Number of data samples (integer)
C IP -Order of exponential model (integer)
C X -Array of complex data samples X(1) through X(N)
C
C Output parameters:
C
C H -Array of exponential model complex amplitudes
C Z -Array of exponential model complex exponents
C ISTAT -Integer status indicator at time of exit
C 4 - error exists in routine CHOLESKY
C
C Notes:
C
C External arrays H,Z muust be dimensioned .GE. IP and array X
C must be dimensioned .GE. N in calling program. Internal array
C B must be dimensioned .GE. IP(IP+I)/2; arrays A, ROOTR, ROOTI
C must be dimensioned .GE. IP; arrays PR,PI must be dimensioned
C .GE. IP+I. Array G must be dimensioned .GE. IP/2.
C
C Subroutine CHOLESKY required.
C

PARAMETER (NMAX=500) !MAX NUMBER OF POINTS PROCESSED
PARAMETER (MAXMODE=50) !MAX NUMBER OF MODES
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COMMON /SCTAK/DSTAK(1 500)
DOUBLE PRECISION DSTAK
COMPLEX* 16 H(MAXMODE),Z(MAXMODE),A(100),B(2000),G(100)
COMPLEX X(NMAX)
REAL*4 PF,PB,PS,EPS

REAL*8 AR(NMAX,MAXMODE),AI(NMAX,MAXMODE),BR(NMAX),BI(NMAX)
REAJ,*8 XR(MAXMODE),XI(MAXMODE)
REAL*8 PR(MAXMODE+1 ),PI(MAXMODE+ 1)
REAL*8 ROOTR(MAXMODE),ROOTI(MAXMODE)
REAL*8 C1,C2,C3,C4,C5,C6,SUMR,SUMI,SUM

LOGICAL*4 FAIL TS HOOT
C

CALL ISTK!IN(1500,4)
ISTAT=-O

C
C
C* FIRST STEP: Find coeffients of polynomnial to be rooted*
C*******************************
C
150 NROW =N-IP

NCOL = IP
DO 210 I= 1,NCOL

DO 220 J=1,NROW
IC=((NCOL- 1)+J)-(I- 1)
AR(J,I)=DBLE(REAL(X(IC)))

220 AI(J,I)=DBLE(AIMAG(X(IC)))
210 CONTINUE
C

DO 230 ID=l,NROW
IH=NCOL+ID
BR(ID)=-DBLE(REAL(X(IH)))

230 BI(ID)=-DBLE(AIMAG(X(IH))
C

CALL DCLST2(NMAX,MAXMODE,NROW,NCOL,AR,AI,BR,BI, 1,
1 XR,XI)

C
PR(I)=1.DO
P1(1 )=0.DO
DO 240 WIV=,NCOL !sets up roots for DCPOLY

PR(IV+ 1)=XR(IV)
240 PI(IV+1 )=XI(WV)
C
C *****k**************************

C *SECOND STEP: Polynomial rooting for complex exponential*
C *parameters

C
C
50 CALL DCPOLY (IP,PR,PI,ROOTR,ROOTI)
C

DO60K = lIJP
60 Z(K)=DCMPLX(ROTR(K),ROOTJ(K))
C
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C
C * HRD STEP: Complex amplitude parameter estimates *

C
63 1=-0

DO 100 K=1,IP
Cl =ROOTR(K)
C2=ROOTI(K)
DO 80 J=1,K

SUMR=CI *ROOR(J)+C*ROOTI(J)
SUMI=C2*ROOTR(J)-C1 *ROOTIlQ)
I=1+1
C3=SUMR*SUMR+ISUMI*SUMI
SUM=C3-2.DO*SUMR+l .DO
IF(SUM .EQ. 0.DO) GOTO 70
C3=C?**N
C3=DSQRT(C3)
C4=DATAN2(SUMI,SUMR)*N
C5=C3*DCOS(C4)- I.DO
C6=C3*DSIN(C4)
SUMR=SUMR-l1.DO
SUMI=-SUMI
C3=(SUMR*C5-SUMI*C6)/SUM
C4=(SUMR*C6+SUMI*C5)/SUM
B(I)=DCMPLX(C3,C4)
GOTO 80

70 B (I)=DCMPLX(DFLOAT(N),0.DO)
80 CONTINUE
C

SUMR=REAL(X( 1))
SUMI =AIMAG(X(1))
C2=-C2
C3=l .DO
C4=0O.DO

C
DO 90 J=2,N

SUM=C3
C3=SUM*CI -C4*C2
C4=SUM*C2+C4*Cl
SUMR=SUMR+C3*REAL(X(J))-C4*AIMAG(X(J))

90 SUMI=SUMI+,C4*REAL(X(J))+C3*AIMAG(X(J))
C
100 H(K)=DCMPLX(SUMR,SUMI)
C

CALL CHOLESKY (IP,EPS,B,H,JSTAT)
C

IF(JSTAT .NE. 0) ISTAT=4
C
C********************************
C *Computation of residue*
C********************************
c
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CALL RESIDUAL(X,PR,PI,IP,N,ERR)
C

RETURN
END
SUBROUTINE RESIDUAL(X,PR,PI,IORD,NPROC,ERR)C *************************************************************

C RESIDUAL is a routine which computes energy of error between
C model and the data. The data is modelled as an all pole filter
C and, if the data is passed through FIR filter with same
C filter coefficients as denominator of HR model, should yield
C an impulse. An impulse is subtracted from convolution of
C data and FIR filter and remaining energy is found (as ERR).
C

REAL*8 PR(1),PI(1)
REAL FILR(4096),FILI(4096),VALR(4096),VALI(4096)
COMPLEX X(1)
LOGICAL SKIP
SKIP = .FALSE.
NCONV = lORD + NPROC !Required length of conv/FFT
NFFT = 0

C Find FFT order-should be radix 2 .GE. NPPROC + (IORD+l) - 1
DO 1011 = 1,12

IF(SKIP) GOTO 10
NTRY = 2**I1
IF(NTRY .GE. NCONV) THEN
NFFT = 11
SKIP = .TRUE.

ENDIF
10 CONTINUE
C Order of FFT is NFFT. Now zero pad array

DO 20 JI = 1, NTRY
FILR(J I) = 0.0
FILI(J1) = 0.0
VALR(J1) = 0.0

20 VALI(J1) = 0.0
C Fill FFT input arrays with values

DO 30 M2= 1,IORD + 1
FILR(M2) = SNGL(PR(M2))

30 FILI(M2) = SNGL(PI(M2))
DO 40 M3= 1,NPROC
VALR(M3) = REAL(X(M3))

40 VALI(M3) = AIMAG(X(M3))
C Call FFT program; convolution is accomplished by FFT of input
C and filter, multiplying result point by point and IFFT.

CALL FFT842(0,NTRY,FILR,FILI)
CALL FFT842(0,NTRY,VALR,VALI)

C Point by point multiplication
DO 50 M = 1, NTRY

TEMPR = FILR(M) * VALR(M) - FILI(M) * VALI(M)
TEMPI = FILR(M)*VALJ(M) + FILI(M)*VALR(M)
VALR(M) = TEMPR

50 VALI(M) =TEMPI
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C Now IFFT for convolution result- perfect model yields impulse
CALL FFT842(1,NTRY,VALR,VALI)

C Subtract impulse and sum residual for energy
ERR= 0.0

C SUM FROM 1ST POINT AWAY FROM ORIGIN TO LENGTH OF SEQUENCE
DO 60 M4 = 2,NTRY

60 ERR = ERR + (VALR(M4) *VALR(M4) + VALI(M4)*VALI(M4))
ERR = ERR/(NTRY- 1)
RETURN
END

C-----------------------------------------
C SUBROUTINE: FFT842
C FAST FOURIER TRANSFORM FOR N=2**M
C COMPLEX INPUT
C-----------------------------------------
C

SUBROUTINE FFiT842(IN, N, X, Y)
C
C THIS PROGRAM REPLACES THE VECTOR Z=X+IY BY ITS FINITE
C DISCRETE, COMPLEX FOURIER TRANSFORM IF IN--0. THE INVERSE
TRANSFORM
C IS CALCULATED FOR IN=. IT PERFORMS AS MANY BASE
C 8 ITERATIONS AS POSSIBLE AND THEN FINISHES WITH A BASE 4 ITERATION
C OR A BASE 2 ITERATION IF NEEDED.
C
C THE SUBROUTINE IS CALLED AS SUBROUTINE FFT842 (IN,N,X,Y).
C THE INTEGER N (A POWER OF 2), THE N REAL LOCATION ARRAY X, AND
C THE N REAL LOCATION ARRAY Y MUST BE SUPPLIED TO THE SUBROUTINE.
C

DIMENSION X(2), Y(2), L(15)
COMMON /CON2/ P12, P7
EQUIVALENCE (L15,L(1)), (L14,L(2)), (L13,L(3)), (L12,L(4)),
* (L 11,L(5)), (LiO,L(6)), (L9,L(7)), (L8,L(8)), (L7,L(9)),
* (L6,L(10)), (L5,L(11)), (L4,L(12)), (L3,L(13)), (L2,L(14)),
* (L1,L(15))

C
C
C IW IS A MACHINE DEPENDENT WRITE DEVICE NUMBER
C

IW = I1MACH(2)
C

P12 = 8.*ATAN(1.)
P7 = I./SQRT(2.)
DO 10 1=1,15
M=I
NT = 2**1
IF (N.EQ.NT) GO TO 20

10 CONTINUE
WRITE (IW,9999)

9999 FORMAT (35H N IS NOT A POWER OF TWO FOR FFI'842)
STOP

20 N2POW = M
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NTHPO = N
FN = NTHPO
IF (IN.EQ. 1) GO TO 40
DO 30 I=1,NTHPO
Y(D) = -Y(D)

30 CONTINUE
40 N8POW = N2POW/3

IF (N8POW.EQ.0) GO TO 60
C
C RADIX 8 PASSES,IF ANY.
C

DO 50 IPASS=1,N8POW
NXTLT = 2**(N2POW-3*IPASS)
LENGT = 8*NXTLT
CALL R8TX(NXThT, NTHPO, LENGT, X(1), X(NXTLT+1), X(2*NXTLT+1),

" X(3 *WCFLT+ 1), X(4*NXTLT+I ), X(5 *NXJLT+ 1), X(6*NXTLT+ 1),
* X(7*NXTLT+1), Y(1), Y(NXTLT+1), Y(2*NXTLT+1), Y(3*NXTLT+1),
" Y(4*NXTLT+ 1), Y(5*NXTLT+ 1), Y(6*NXTLT+ 1), Y(7*NXl.T-TI- ))

50 CONTINUE
C
C IS THERE A FOUR FACTOR LEFT
C

60 IF (N2POW-3*N8POW-1) 90,70, 80
C
C GO THROUGH THE BASE 2 ITERATION
C
C

70 CALL R2TX(NTHPO, X(1), X(2), Y(1), Y(2))
GO TO 90

C
C GO THROUGH THE BASE 4 ITERATION
C

80 CALL R4TX(NTHPO, X(1), X(2), X(3), X(4), Y(1), Y(2), Y(3), Y(4))
C
90 DO 110J=,1 5

L(J) =1
IF (J-N2POW) 100, 100, 110

100 L(J) =2**(N2POW+-J)
110 CONTINUE

U = I
DO 130 JL=1,L1
DO 130 J2=J 1,L2,L1
DO 130 J3=J2,L3,L2
DO 130 J4=J3,L4,L3
DO 130 J5=J4,L5,L4
DO 130 J6=J5,L6,LS
DO 130 J7=J6,L7,L6
DO 1 30 J8=J7,L8,L7
DO 130 J9=Jg,L,9,L8
DO 130 Jl0zJ9,LlO,L9
DO 130 J11=J]O,L1,LIU1
DO 130 J12=JI11,1,12, 1-1
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DO 130 J13=J12,L13,L12
DO 130 J14=J13,L14,LI3
DO 130 JI=J14,L15,L14

IF (U-JI) 120, 130, 130
120 R=X(IJ)

X(u) = X(JI)
X(JI) = R
FI= Y(U)
Y(u) = Y(JI)
Y(JI) = FI

130 U=LI+l
IF (IN.EQ.1) GO TO 150
DO 140 I=I,NTHPO

Y(I) = -Y(I)
140 CONTINUE

GO TO 170
150 DO 160 I=1,NTHPO

X(I) = X(I)/FN
Y(I) = Y(I)/FN

160 CONTINUE
170 RETURN

END
C
C --------------------------------------------------------
C SUBROUTINE: R2TX
C RADIX 2 ITERATION SUBROUTINE
C --------------------------------------------------------
C

SUBROUTINE R2TX(NTHPO, CR0, CR1, CIO, CI1)
DIMENSION CRO(2), CR 1 (2), CIO(2), CI1(2)
DO 10 K=I,NTHPO,2

RI = CRO(K) + CRI(K)
CR I(K) = CRO(K) - CR 1(K)
CRO(K) = RI
FI1 = CIO(K) + CII(K)
CI I(K) = CIO(K) - CI I(K)
CIO(K) = FI I

10 CONTINUE
RETURN
END

C
C --------------------------------------------------------------------
C SUBROUTINE: R4TX
C RADIX 4 ITERATION SUBROUTINE
C --------------------------------------------------------------------
C

SUBROUTINE R4TX(NTHPO, CR0, CR1, CR2, CR3, CIO, CI1, C12, C13)
DIMENSION CRO(2), CR1(2), CR2(2), CR3(2), CIO(2), CI1(2), C12(2),

* C13(2)
DO 10 K=I,NTHPO,4

RI = CRO(K) + CR2(K)
R2 = CRO(K) - CR2(K)
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R3=CR() R3K

R3 = CR1(K) + CR3(K)
R41 = CIO(K) - CR2(K)
FI I = CIO(K) + C12(K)

F13 = C I1(K) + C13(K)
F14 =CI I(K) -C13(K)
CRO(K) RI1+R3
CIO(K) =I I1 + F13
CRI(K)=R1- R3
CHl(K) P11 - F13
CR2(K) =R2 - F14
C12(K) F 12 + R4
CR3(K) =R2 +F14
C13(K) = F12 - R4

10 CONTINUE
RETURN
END

C
C -------------------------------------------------------
C SUBROUTINE: R8TX
C RADIX 8 ITERATION SUBROUTINE
C--------------------------------------------------------
C

SUBROUTINE R8TX(NXTLT, NTHPO, LENGT, CR0, CR1, CR2, CR3, CR4,
* CR5, CR6, CR7, CIO, CI I, C12, C13, C14, C15, C16, C17)
DIMENSION CRO(2), CRI(2), CR2(2), CR3(2), CR4(2), CR5(2), CR6(2),

*CR7(2), CI1(2), C12(2), C13(2), C14(2), C15(2), C16(2),
*C17(-), CIO(2)

COMMON /CON2/ P12, P7
C

SCALE = P12/FLOAT(LENGT)
DO 30 J=I,NXTLT
ARG = FLOAT(J-1)*SCALE
Cl = COS(ARG)
S I= SIN(ARG)
C2=Cl**2 - S**2
S2 = C*Sl + CI*SI
C3 = C1*C2 - S1*S2
S3 = C2*S I + S2*Cl
C4 = C2**2 - S2**2
S4 = C2*S2 + C2*S2
C5 = C2*C3 - S2*S3
S5 = C3*S2 + S3*C2
C6 =C3**2 -S3**2
S6 = C3*S3 + C3*S3
C7 = C3*C4 - S3*S4
S7 = C4*S3 + S4*C3
DO 20 K=J,NTHPO,LENGT

ARO = CRO(K) + CR4(K)
ARI = CR I(K) +CR5(K)
AR2 = CR2(K) + CR6(K)
AR3 =CR3(K) + CR7(K)
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AR4 = CRO(K) - CR4(K)
AR5 = CR1(K) - CR5(K)
AR6 = CR2(K) - CR6(K)
AR7 = CR3(K) - CR7(K)
A10 = CIO(K) + C14(K)
All =Cll(K) + C15(K)
A12 = C12(K) + C16(K)
A13 = C13(K) + C17(K)
A14 = CIO(K) - C14(K)
A15 = CI1(K) - C15(K)
A16 = C12(K) - C16(K)
A17 = C13(K) - C17(K)
BRO =ARO +AR2
BRI = AR + AR3
BR2 = ARO - AR2
BR3 = ARI -AR3
BR4 = AR4 - A16
BR5 = AR5 - A17
BR6 =AR4 +A16
BR7 =AR5 +A17
BIO =A10+ A12
BIl =All + A13
B12 =A10- AL2
B13 =All - A13
B14 = A14 + AR6
B15 = A15 + AR7
B16 = A14 - AR6
B17 = A15 - AR7
CRO(K) = BRO + BRI
CIO(K) = BIO + BILI
IF (J.LE. 1) GO TO 10
CRL(K) = C4*(BRO-BRl) - S4*(BI0-BII)
CI1(K) = C4*(BIO-BIl) + S4*(BR0-BRI)
CR2(K) =C2*(BR2-BI3) - S2*(B12+BR3)
CL2(K) =C2*(B12+BR3) + S2*(BR2-BI3)
CR3(K) = C6*(BR2+B13) - S6*(BI2-BR3)
C13(K) =C6*(BI2-BR3) + S6*(BR2+B13)
TR = P7*(BR$.BI5)
TI = P7*(BR5+B15)
CR4(K) = C I*(BR4+TR) - S 1*(B144+TD
C14(K) C 1I*(B14+Tl) + S1I*(BR4+TR)
CR5(K) =C5*(BR4-TR) - S5*(Bl4-TI)
C15(K) =C5*(BI4-TI) + S5*(BR4-TR)
TR = P7*(BR7+B17)
TI =P7*(BR7-.B17)

CR6(K) =C3*(BR6+TR) - S3*(B16+TI)
C16(K) =C3*(B16+TI) + S3*(BR6+TR)
CR7(K) =C7*(BR6-TR) - S7*(BI6-TI)
C17(K) =. C7*(BI6-TI) + S7*(BR6-TR)
GO TO 20

10 CRI(K) =13R0- BRI
C1II(K) = 3IO - 1311
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CR2(K) = BR2- B13
C12(K) = B12 + BR3
CR3(K) = BR2 + B13
C13(K) = BI2 - BR3
TR = P7*(BR5-BI5)
TI = P7*(BR5+BI5)
CR4(K) = BR4 + TR
C14(K) = B14 + TI
CR5(K) = BR4 -TR
C15(K) B14 - TI
TR = -P7*(BR7+BI7)
TI = P7*(BR7-BI7)
CR6(K) =BR6 + TR
C16(K) = B16 + TI
CR7(K) = BR6 -TR
C17(K) = B16 - TI

20 CONTINUE
30 CONTINUE
RETURN
END

C
C -------------------------------------------------------------------
C FUNCTION: I1MACH
C THIS ROUTINE IS FROM THE PORT MATHEMATICAL SUBROUTINE LIBRARY
C IT IS DESCRIBED IN THE BELL LABORATORIES COMPUTING SCIENCE
C TECHNICAL REPORT #47 BY P.A. FOX, A.D. HALL AND N.L. SCHRYER
C ---------------------------------------------------------------------
C

INTEGER FUNCTION I 1 MACHO)
C
C I/O UNIT NUMBERS.
C
C IIMACH( 1) = THE STANDARD INPUT UNIT.
C
C II MACH( 2) = THE STANDARD OUTPUT UNIT.
C
C IIMACJ( 3) = 1HE STANDARD PUNCH UNIT.
C
C IIMACtt(4) = T-I STANDARD ERROR MESSAGE UNIT.
C

(: WORDS.

I 1 %MACI V 5) =1 f1 IE NUMBELR OF BIlTS PER INTE-GER STOR AGE- lNIT'.
C

1C IA(It5 =ii NUMBER OF INITPRC.R INI-R INTERS )K IT.

( IS 1i( II i\R 'I UM S AMCI: IN Ii If: S I-iR i(;BASI A -I()RNI

C SI(A N XS l /x- tS 1) N IW A ,\NW]
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C WHERE 0 .LE. X(I) .LT. A FOR I=0,...,S-l.
CC l1MACH( 7) = A, TH-r BASE.

C I1MACH( 8) = S, THE NUMBER OF BASE-A DIGITS.

C
C I1MACH(9) = A**S - 1, THE LARGEST MAGNITUDE.
C
C FLOATING-POINT NUMBERS.
C
C ASSUME FLOATING-POINT NUMBERS ARE REPRESENTED IN THE T-DIGIT,
C BASE-B FORM
C
C SIGN (B**E)*((X(1)/B) + ... + (X(T)/B**T))
C
C WHERE 0 .LE. X(I) .LT. B FOR I=1,...,T,
C 0 .LT. X(1), AND EMIN .LE. E .LE. EMAX.
C
C IIMACH(l0) = B, THE BASE.
C
C SINGLE-PRECISION
C
C I IMACH(1 1) = T, THE NUMBER OF BASE-B DIGITS.
C
C I IMACH(12) = EMIN, THE SMALLEST EXPONENT E.
C
C I I N/, CH(13) = EMAX, THE LARGEST EXPONENT E.
C
C DOUBLE-PRECISION
C
C I1MACH(14) = T, THE NUMBER OF BASE-B DIGITS.
C
C I IMACH(15) = EMIN, THE SMALLEST EXPONENT E.
C
C IIMACH(16) = EMAX, THE LARGEST EXPONENT E.
C
C TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT,
C THE DESIRED SET OF DATA STATEMENTS SHOULD BE ACTIVATED BY
C REMOVING THE C FROM COLUMN 1. ALSO, THE VALUES OF
C I1MACH(1) - I1MACH(4) SHOULD BE CHECKED FOR CONSISTENCY
C WITH TIlE LOCAL OPERATING SYSTEM.
C

IN'ITGFP IMACI I(16),OUTPUT
C

EQtIVAI. -NCU (IMACI I(4),OUTPUT)
C

C MAC'I INE CONSTANTS FOR TI IE VAX- Il WITI I
C f-W)RTRAN IV P.US COMPILER
C

I)ATA IMA('I 1)/ 5/
[)ATA IMACI B2)/ 6/
I)AIA INIACI 1(3)/ 5 /

I7X-



DATA IMACH(4) / 6/
DATA IMACH(5) / 32/
DATA IAACH(6) / 4 /
DATA IMACH(7) / 2 /
DATA IMACH(8) / 31/
DATA IMACH(9) / 2147483647 /
DATA IMACH(10) / 2 /
DATA IMACH(11)f 24/
DATA IMACH(12) / -127 /
DATA IMACH(13)/ 127 /
DATA LMACH(14) / 56 /
DATA IMACH(15) / -127 /
DATA IMACH(16)/ 127 /

C
1F (I .LT. I .OR. I.GT. 16) GO TO 10

C

IIMACH=IMACH(1)
RETURN

C
10 WRITE(OUTPUT,9000)
9000 FORMAT(39H1ERROR 1 IN I1MACH - I OUT OF BOUNDS)
C

STOP
C

END
SUBROUTINE CHOLESKY (M,EPS,A,B,ISTAT)

C
C This program solves a hermitial symmetric set of complex linear
C simultaneaous equations using the Cholesky decomposition method.
C
C AX=B
C
C Input Parameters:
C
C M -Order of the matrix (#of linear equations)
C EPS -Epsilon(quantity for testing loss of significance;
C depends on machine precision, suggest I.E-15)
C A -Array of complex matrix elements sored columnwise
C (ie A(l,1) is stored as A(1),A(1,2) as A(2),
C A(2,2) as A(3), etc. Only the top triangular part of the
C A matrix is stored since the other half is obtained by
C Hermitian symmetry)
C B -Array of complex elements of right hand side vextor
C
C Output Parameters:
C
C B -Complex solution X vector stored in place of B vector
C ISTAT -Integer status indicator at time of exit
C 0 for normal exit
C -I if matrix is singular
(-4 k if there is loss of numerical significance or if
C at norpositive-dcfinite matrix detected at pivot K
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C
C Notes:
C
C External array A must be dimensioned .GE. M(M+1)/2 and array
C B must be dimensioned .GE. M in the calling program. Array A
C is destroyed when this routine is called.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMPLEX*16 A(1),B(1),SUM

REAL EPS
C
C Factor into triangular and diagonal form
C

DEPS=DBLE(EPS)
ISTAT--0
KPIV=0
DO 100 K=I,M

KPIV=KPIV+K
IND=KPIV
LEND=K-1
TINY=DABS(DEPS*DREAL(A(KPIV)))
DO 100 I=K,M

SUM=(0.DO,0.DO)
IF (LEND .EQ. 0) GOTO 40
LPIV=KPIV
DO 30 L=I,LEND

LPIV=LPIV+L-K-1
30 SUM=SUM+DREAL(A(LPIV))*A(IND-L)*DCONJG(A(KPIV-L))
40 SUM=A(IND)-SUM

IF (I .NE. K) GOTO 80
C
C Test for negative pivot element and loss of significance
C

IF (DREAL(SUM) .GT. TINY) GOTO 90
IF (DREAL(SUM) .GT. O.DO) GOTO 70
ISTAT=- 1
RETURN

70 IF (ISTAT .GT. 0) GOTO 90
ISTAT = K

90 A(KPIV)=DCMPLX(DREAL(SUM),0.DO)
DPIV=(I.DO)/REAL(SUM)
GOTO 100

80 A(IND)=SUM*DPIV
100 IND=IND+I
C
C Solve for intermediate column vector solution
C

KPIV=I
DO 200 K=2,M

KPIV=KPIV+K
SUM=B(K)
DO 210 J=I,K- I
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210 SUM=SUM-B(K-J)*DCONJG(A(KPIV-J))
200 B(K)=SUM
C
C Sc!ve for final column vector solution
C

KPIV=(M* (M+ 1))12
B(M)=B(M)IDREAL(A(KPIV))
DO 300 K=M,2,-l

KPI V=KPI V-K
IND=KPIV
SUM=B(K- 1)/DREAL(A(KPIV))
DO 3 10 J=K,M

IND=IIND+(J- 1)
310 SUM=SUM-B(J)*A(IND)
300 B(K-1)=SUM

RETURN
END
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